Physics
Physics
1st Edition
Walker
ISBN: 9780133256925
Textbook solutions

All Solutions

Section 4.3: Relative Motion

Exercise 28
Step 1
1 of 4
$newcommand{tx}$[1]${text{#1}}$

#### Known

The relative motion of the boat with respect to the ground is equal to:

$$
begin{align*}
boxed{vec{v}_{tx{bg}}=vec{v}_{tx{bw}}+vec{v}_{tx{wg}}}
end{align*}
$$

#### Calculation

Given: $v_{tx{bw}}=6.1 frac{tx{m}}{tx{s}}$ with a direction relative to water $theta=25^circ$, $v_{tx{wg}}=4.5 frac{tx{m}}{tx{s}}$, working with the components of $vec{v}_{tx{bw}}$ and $vec{v}_{tx{wg}}$, we have:

$$
begin{align*}
&v_{tx{bw}, x}=left(6.1 frac{tx{m}}{tx{s}}right) tx{cos}(25^circ)=5.5 frac{tx{m}}{tx{s}}\
&v_{tx{bw}, y}=left(6.1 frac{tx{m}}{tx{s}}right) tx{sin}(25^circ)=2.6 frac{tx{m}}{tx{s}}\
&v_{tx{wg}, x}=0 frac{tx{m}}{tx{s}}\
&v_{tx{wg}, y}=-4.5 frac{tx{m}}{tx{s}}\
end{align*}
$$

Therefore:

$$
begin{align*}
&v_{tx{bg}, x}=v_{tx{bw}, x}+v_{tx{wg}, x}=5.5 frac{tx{m}}{tx{s}}+0 frac{tx{m}}{tx{s}}=5.5 frac{tx{m}}{tx{s}}\
&v_{tx{bg}, y}=v_{tx{bw}, y}+v_{tx{wg}, y}=2.6 frac{tx{m}}{tx{s}}-4.5 frac{tx{m}}{tx{s}}=-1.9 frac{tx{m}}{tx{s}}
end{align*}
$$

This implies:

$$
begin{align*}
v_{tx{bg}}&=sqrt{left(v_{tx{bg}, x}right)^2+left(v_{tx{bg}, y}right)^2}\
&=sqrt{left(5.5 frac{tx{m}}{tx{s}}right)^2+left(-1.9 frac{tx{m}}{tx{s}}right)^2}\
&=5.8 frac{tx{m}}{tx{s}}
end{align*}
$$

Step 2
2 of 4
$newcommand{tx}$[1]${text{#1}}$

And

$$
begin{align*}
theta=tx{tan}^{-1}left(frac{-1.9 cancel{frac{tx{m}}{tx{s}}}}{5.5 cancel{frac{tx{m}}{tx{s}}}}right)=-19^circ tx{or} 19^circ tx{downstream}
end{align*}
$$

#### Conclusion

The boat is moving with a speed of $5.8 frac{tx{m}}{tx{s}}$ and $19^circ$ downstream relative to the ground.

Graphically:

Step 3
3 of 4
Exercise scan
Result
4 of 4
The boat is moving with a speed of $5.8 frac{text{m}}{text{s}}$ and $19^circ$ downstream relative to the ground.
Exercise 29
Step 1
1 of 4
$newcommand{tx}$[1]${text{#1}}$

#### Known

The relative motion of the airplane with respect to the ground is equal to:

$$
begin{align}
boxed{vec{v}_{tx{pg}}=vec{v}_{tx{pa}}+vec{v}_{tx{ag}}}
end{align}
$$

Where $vec{v}_{tx{pg}}$ is the velocity of the plane with respect to the ground, $vec{v}_{tx{pa}}$ is the velocity of the plane with respect to the air and $vec{v}_{tx{ag}}$ is the velocity of the air with respect to the ground (wind velocity).
#### Calculation

Givens: $v_{tx{ag}}=65 frac{tx{km}}{tx{h}}$, from east to west. $v_{tx{pa}}=340 frac{tx{km}}{tx{h}}$.

The pilot wants to travel north, so the plane will have $v_{tx{pg}, y}$ component on the $y$ axis and $v_{tx{pg}, x}=0 frac{tx{km}}{tx{h}}$ component on the $x$ axis. See Figure 1.

Step 2
2 of 4
Exercise scan
Step 3
3 of 4
$newcommand{tx}$[1]${text{#1}}$

The components of the wind velocity are given by:

$$
begin{align*}
v_{tx{ag}, x}=-65 frac{tx{km}}{tx{h}}, v_{tx{ag}, y}=0 frac{tx{km}}{tx{h}}
end{align*}
$$

Choosing the positive direction from west to east and the negative from east to west.

Finally, the components of the plane’s velocity with respect to the air are:

$$
begin{align*}
v_{tx{pa}, x}=v_{tx{pa}} tx{cos}(theta)hspace{0.5cm} tx{and}hspace{0.5cm} v_{tx{pa}, y}=v_{tx{pa}} tx{sin}(theta)
end{align*}
$$

Using expression (1) in components:

$$
begin{align*}
v_{tx{pg}, y}=v_{tx{pa}, y}+v_{tx{ag}, y}
end{align*}
$$

And

$$
begin{align*}
&v_{tx{pg}, x}=v_{tx{pa}, x}+v_{tx{ag}, x}\
&v_{tx{pg}, x}=v_{tx{pa}} tx{cos}(theta)+v_{tx{ag}, x}\
&implies tx{cos}=frac{v_{tx{pg}, x}-v_{tx{ag}, x}}{v_{pa}}=frac{0 frac{tx{km}}{tx{h}}-left(-65 frac{tx{km}}{tx{h}}right)}{340 frac{tx{km}}{tx{h}}}=frac{65}{340}\
&thereforetheta=tx{cos}^{-1}left(frac{65}{340}right)=79^circ
end{align*}
$$

#### Conclusion

The pilot should steer the plane $79^circ$ north of east.

Result
4 of 4
The pilot should steer the plane $79^circ$ north of east.
Exercise 30
Step 1
1 of 2
$newcommand{tx}$[1]${text{#1}}$

#### Known

The relative motion of the boat with respect to the ground is given by:

$$
begin{align*}
&vec{v}_{tx{bg}}=vec{v}_{tx{bw}}+vec{v}_{tx{wg}}\
implies &vec{v}_{tx{bg}, x}=vec{v}_{tx{bw}, x}+vec{v}_{tx{wg}, x}\
&vec{v}_{tx{bg}, y}=vec{v}_{tx{bw}, y}+vec{v}_{tx{wg}, y}
end{align*}
$$

For the boat move straight across the river (on the $x$-axis), its velocity component perpendicular to this direction must be zero (on the $y$-axis).
#### Calculation

Givens: $v_{tx{bw}(tx{before})}=6.1 frac{tx{m}}{tx{s}}$ with $theta=25^circ$ relative to water. $v_{tx{wg}}=4.5 frac{tx{m}}{tx{s}}$

Therefore:

$$
begin{align*}
&v_{tx{bg}, y}=v_{tx{bw}, y}+v_{tx{wg}, y}=0 frac{tx{m}}{tx{s}}\
implies &v_{tx{bw}, y}=-v_{tx{wg}, y}\
&v_{tx{bw}(tx{after})} tx{sin}(theta)=-vec{v}_{tx{wg}, y}\
&v_{tx{bw}(tx{after})}=frac{-v_{tx{wg}, y}}{tx{sin}(theta)}=frac{-left(-1.4 frac{tx{m}}{tx{s}}right)}{tx{sin}(25^circ)}=3.3 frac{tx{m}}{tx{s}}
end{align*}
$$

With:

$$
begin{align*}
v_{tx{bw}(tx{after})}<v_{tx{bw}(tx{before})}
end{align*}
$$

And

$$
begin{align*}
v_{tx{bw}(tx{before})}-v_{tx{bw}(tx{after})}=6.1 frac{tx{m}}{tx{s}}-3.3 frac{tx{m}}{tx{s}}=2.8 frac{tx{m}}{tx{s}}
end{align*}
$$

#### Conclusion

The captain should reduce the speed of the boat by $2.8 frac{tx{m}}{tx{s}}$ relative to the water.

Result
2 of 2
The captain should reduce the speed of the boat by $2.8 frac{text{m}}{text{s}}$ relative to the water.
Exercise 31
Step 1
1 of 3
In this problem, the velocity of object 1 relative to object 2 is $v_{12}$ and the velocity of object 2 relative to object 3 is $v_{23}$. We find the velocity of the object 1 relative to object 3.
Step 2
2 of 3
By vector addition of relative velocities, we get
$$
boxed{ {v}_{13} = {v}_{12} + {v}_{23} }
$$
Result
3 of 3
$$
{v}_{13} = {v}_{12} + {v}_{23}
$$
Exercise 32
Step 1
1 of 1
When we run into the wind, the direction of our velocity and the direction of wind velocity are in opposite direction. So the relative velocity of the wind with respect to us will increase. So we will feel the wind is stronger. But when we run with wind, the direction of wind and me is same. Hence the relative velocity of wind with respect to me is decreased and hence we feel wind is less.
Exercise 33
Step 1
1 of 1
The boat is moving with 25$text{textdegree}$ upwards with respect to water, not with respect to ground. The river water is also moving down with respect to the ground. So the velocity of the boat is the addition of velocity of the water and velocity of the boat with respect to water. Since the water is moving down, the upward angle decreases.
Exercise 34
Step 1
1 of 3
$newcommand{tx}$[1]${text{#1}}$

#### Known

The movement of an object depends on the reference system from which it is viewed.

If an object 1 has velocity $vec{v}_1$ with respect to an object 2, this is $vec{v}_{12}$ and object 2 has a velocity $vec{v}_2$ with respect an object 3, this is $vec{v}_{23}$, then the velocity of object 1 with respect to object 3 is $vec{v}_{13}$ and is equal to:

$$
begin{align}
boxed{vec{v}_{13}=vec{v}_{12}+vec{v}_{23}}
end{align}
$$

#### Calculation

Givens: $v_{tx{fd}}=6.2 frac{tx{m}}{tx{s}}$, moving north ($v_{tx{fd}}$ is the speed of the ferry relative to the dock). $v_{tx{pf}}=1.1 frac{tx{m}}{tx{s}}$, moving east ($v_{tx{pf}}$ is the speed of the person relative to the ferry).

From (1), we have that the velocity of the person relative to the dock is:

$$
begin{align*}
&vec{v}_{tx{pd}}=vec{v}_{tx{pf}}+vec{v}_{tx{fd}}\
implies &v_{tx{pd}, x}=v_{tx{pf}, x}+v_{tx{fd}, x}\
&v_{tx{pd}, y}=v_{tx{pf}, y}+v_{tx{fd}, y}
end{align*}
$$

Where (see figure):

$$
begin{align*}
&v_{tx{pf}, x}=1.1 frac{tx{m}}{tx{s}}hspace{0.5cm} tx{and}hspace{0.5cm} v_{tx{pf}, y}=0 frac{tx{m}}{tx{s}}\
&v_{tx{fd}, x}=0 frac{tx{m}}{tx{s}}hspace{0.5cm} tx{and}hspace{0.5cm} v_{tx{fd}, y}=6.2 frac{tx{m}}{tx{s}}
end{align*}
$$

Therefore:

$$
begin{align*}
&v_{tx{pd}, x}=1.1 frac{tx{m}}{tx{s}}hspace{0.5cm} tx{and}hspace{0.5cm} v_{tx{pd}, y}=6.2 frac{tx{m}}{tx{s}}\
&implies vec{v}_{pd}=left(1.1 frac{tx{m}}{tx{s}}, 6.2 frac{tx{m}}{tx{s}}right)\
&implies v_{pd}=sqrt{left(1.1 frac{tx{m}}{tx{s}}right)^2+left(6.2 frac{tx{m}}{tx{s}}right)^2}=6.3 frac{tx{m}}{tx{s}}
end{align*}
$$

#### Conclusion

The speed of the person relative to the dock is $6.3 frac{tx{m}}{tx{s}}$.

Step 2
2 of 3
Exercise scan
Result
3 of 3
The speed of the person relative to the dock is $6.3 frac{text{m}}{text{s}}$.
Exercise 35
Step 1
1 of 2
$newcommand{tx}$[1]${text{#1}}$

#### Known

The movement of an object depends on the reference system from which it is viewed.

If an object 1 has velocity $vec{v}_1$ with respect to an object 2, this is $vec{v}_{12}$ and object 2 has a velocity $vec{v}_2$ with respect an object 3, this is $vec{v}_{23}$, then the velocity of object 1 with respect to object 3 is $vec{v}_{13}$ and is equal to:

$$
begin{align}
boxed{vec{v}_{13}=vec{v}_{12}+vec{v}_{23}}
end{align}
$$

#### Calculation

Givens: $v_{tx{ps}}=3.8 frac{tx{m}}{tx{s}}$, moving north ($v_{tx{ps}}$ is the speed of the person relative to the ship). $v_{tx{sw}}=12 frac{tx{m}}{tx{s}}$, moving east ($v_{tx{sw}}$ is the speed of the ship relative to the water).

From (1), we have that the velocity of the person relative to the water is:

$$
begin{align*}
&vec{v}_{tx{pw}}=vec{v}_{tx{ps}}+vec{v}_{tx{sw}}\
implies &v_{tx{pw}, x}=v_{tx{ps}, x}+v_{tx{sw}, x}\
&v_{tx{pw}, y}=v_{tx{ps}, y}+v_{tx{sw}, y}
end{align*}
$$

Where (see figure):

$$
begin{align*}
&v_{tx{pw}, x}=0 frac{tx{m}}{tx{s}}hspace{0.5cm} tx{and}hspace{0.5cm} v_{tx{pw}, y}=3.8 frac{tx{m}}{tx{s}}\
&v_{tx{sw}, x}=12 frac{tx{m}}{tx{s}}hspace{0.5cm} tx{and}hspace{0.5cm} v_{tx{sw}, y}=0 frac{tx{m}}{tx{s}}
end{align*}
$$

Therefore:

$$
begin{align*}
&v_{tx{pw}, x}=12 frac{tx{m}}{tx{s}}hspace{0.5cm} tx{and}hspace{0.5cm} v_{tx{pw}, y}=3.8 frac{tx{m}}{tx{s}}\
&implies vec{v}_{tx{pw}}=left(12 frac{tx{m}}{tx{s}}, 3.8 frac{tx{m}}{tx{s}}right)\
&thereforetheta=tx{tan}^{-1}left(frac{v_{tx{pw}, y}}{v_{tx{pw}, x}}right)=tx{tan}^{-1}left(frac{3.8 frac{tx{m}}{tx{s}}}{12 frac{tx{m}}{tx{s}}}right)=17.6^circ
end{align*}
$$

#### Conclusion

The person is moving with respect to the water in a direction $17.6^circ$ north of east.

Result
2 of 2
The person is moving with respect to the water in a direction $17.6^circ$ north of east.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New