All Solutions
Section 17.4: Applications of Lenses
$$
begin{align*}
d_{o,1} &= 15 text{ m} \
d_{o,2} &= 5.32 text{ m} \
f &= 45.5 text{ mm}
end{align*}
$$
$$
begin{align*}
dfrac{1}{d_{o,1}} + dfrac{1}{d_{i,1}} &= dfrac{1}{f} \
d_{i,1} &= dfrac{1}{dfrac{1}{f} – dfrac{1}{d_{o,1}}} \
&= dfrac{1}{dfrac{1}{0.0455 text{ m}} – dfrac{1}{15 text{ m}}} \
d_{i,1} &= 45.638 text{ mm}
end{align*}
$$
$$
begin{align*}
\
dfrac{1}{d_{o,2}} + dfrac{1}{d_{i,2}} &= dfrac{1}{f} \
d_{i,2} &= dfrac{1}{dfrac{1}{f} – dfrac{1}{d_{o,2}}} \
&= dfrac{1}{dfrac{1}{0.0455 text{ m}} – dfrac{1}{5.32 text{ m}}} \
d_{i,2} &= 45.893 text{ mm}
end{align*}
$$
$$
{d = d_{i,2} – d_{i,1}}
$$
$$
{d = 45.893 text{ mm} – 45.638 text{ mm}}
$$
$$
{boxed{d = 0.255 text{ mm}}}
$$
{d = 0.255 text{ mm}}
$$
$$
begin{align*}
d_o &= 0.750 text{ m} \
f &= 105 text{ mm}
end{align*}
$$
The distance from a camera lens to the CCD sensor is equal to the image distance from the lens. This can be calculated by applying the thin-lens equation to the problem :
$$
begin{align*}
dfrac{1}{d_o} + dfrac{1}{d_i} &= dfrac{1}{f} \
d_i &= dfrac{1}{dfrac{1}{f} – dfrac{1}{d_o}} \
&= dfrac{1}{dfrac{1}{105 text{ mm}} – dfrac{1}{750 text{ mm}}}
end{align*}
$$
$$
{boxed{d_i = 122.1 text{ mm}}}
$$
{d_i = 122.1 text{ mm}}
$$
$$
begin{align*}
d_o &= 3.8 text{ m} \
d_i &= 6.2 text{ cm}
end{align*}
$$
The distance from a camera lens to the CCD sensor is equal to the image distance from the lens. The focal length of the lens can be calculated by applying the thin-lens equation to the problem :
$$
{dfrac{1}{d_o} + dfrac{1}{d_i} = dfrac{1}{f}}
$$
$$
{f = dfrac{1}{dfrac{1}{d_o} + dfrac{1}{d_i}}}
$$
$$
{f = dfrac{1}{dfrac{1}{380 text{ cm}} + dfrac{1}{6.2 text{ cm}}}}
$$
$$
{boxed{f = 6.1 text{ cm}}}
$$
{f = 6.1 text{ cm}}
$$