All Solutions
Page 91: Lesson Check
$$
v_text{av} = frac{v_text{f} + v_text{i}}{2}
$$
We see that the average speed is the $textbf{arithmetic mean}$ of the initial and final velocities of an object traveling with constant acceleration.
We relate the stopping time $t$ to the initial driving velocity $v_text{i}$. The final velocity must be $v_text{f} = 0$ since the car stops.
$$
begin{align*}
v_text{f} &= v_text{i} + at \
0 &= v_text{i} + at \
implies t &= left( -frac{1}{a} right)v_text{i} \
t &propto v_text{i}
end{align*}
$$
The time it takes for the car to the driving speed when the driver hits the breaks. Hence, if the driving speed is doubled, the stopping time must also $textbf{doubled}$.
We now relate the stopping distance $Delta x$ to the initial velocity $v_text{i}$
$$
begin{align*}
v_text{f}^{2} &= v_text{i}^{2} + 2a Delta x \
0 &= v_text{i}^{2} + 2a Delta x \
implies Delta x &= left( -frac{1}{2a} right)v_text{i}^{2} \
Delta x &propto v_text{i}^{2}
end{align*}
$$
The distance needed to stop is proportional to the square of the driving velocity when the driver hits the breaks. The stopping distance must have $textbf{quadrupled}$.
$$
begin{align*}
v_text{av} &= frac{v_text{i} + v_text{f}}{2} \
&= frac{12~mathrm{m/s} + 0}{2} \
v_text{av} &= 6.0~mathrm{m/s}
end{align*}
$$
The average speed is the magnitude of the average velocity, so we have
$$
boxed{ s_text{av} = 6.0~mathrm{m/s} }
$$
s_text{av} = 6.0~mathrm{m/s}
$$
To calculate the acceleration, we have
$$
begin{align*}
v_text{f} &= v_text{i} + at \
implies a &= frac{v_text{f} – v_text{i}}{t} \
&= frac{0 – 5.8~mathrm{m/s}}{1.1~mathrm{s}} \
&= -5.27273~mathrm{m/s^{2}} \
a &= boxed{ -5.3~mathrm{m/s^{2}} }
end{align*}
$$
For the distance she covers to stop, we have
$$
begin{align*}
v_text{f}^{2} &= v_text{i}^{2} + 2a Delta x \
implies Delta x &= frac{v_text{f}^{2} – v_text{i}^{2}}{2a} \
&= frac{v_text{f}^{2} – v_text{i}^{2}}{2 left( frac{v_text{f} – v_text{i}}{t} right)} \
&= frac{v_text{f} + v_text{i}}{2} t \
&= frac{0 + 5.8~mathrm{m/s}}{2} left( 1.1~mathrm{s} right) \
&= 3.19~mathrm{m} \
Delta x &= boxed{ 3.2~mathrm{m} }
end{align*}
$$
item [a)] $a = -5.3~mathrm{m/s^{2}}$
item [b)] $Delta x = 3.2~mathrm{m}$
end{enumerate}
textbf{Concept :}
$$
With the help of velocity-position equation for constant acceleration we can determine the velocity of the firefighter after sliding a known distance.
Compute the final velocity from velocity-position equation
$$
textbf{Solution :}
$$
$$
v^2_f= v^2_i+2aDelta x
$$
$$
v_f=sqrt{ v^2_i+2aDelta x}=sqrt{0^2+2(6.2m/s^2)(3.7m)}=sqrt{45.88m/s^2}=color{#4257b2} boxed{bf 6.8m/s}
$$
v_f=6.8m/s
$$
The distance covered is the product of the average speed and time interval for constant acceleration region. In this time interval, the slope is constant o the acceleration is also constant.
$$
begin{align*}
Delta x_{0 to 2} &= left( frac{v_text{i} + v_text{f}}{2} right) Delta t \
&= left( frac{0 + 2~mathrm{m/s}}{2} right) left( 2~mathrm{s} right) \
Delta x_{0 to 2} &= boxed{ 2.00~mathrm{m} }
end{align*}
$$
We split this region into the two intervals of constant acceleration. For time interval $t = 2mathrm{s}$ to $t = 4~mathrm{s}$
$$
begin{align*}
Delta x_{2 to 4} &= left( frac{v_text{i} + v_text{f}}{2} right) Delta t \
&= left( frac{2~mathrm{m/s} + 2.5~mathrm{m/s}}{2}right) left( 2~mathrm{s} right) \
Delta x_{2 to 4} &= 4.50~mathrm{m}
end{align*}
$$
$$
begin{align*}
Delta x_{2 to 4} &= left( frac{v_text{i} + v_text{f}}{2} right) Delta t \
&= left( frac{2.5~mathrm{m/s} + 1~mathrm{m/s}}{2}right) left( 1~mathrm{s} right) \
Delta x_{2 to 4} &= 1.75~mathrm{m}
end{align*}
$$
$$
begin{align*}
Delta x_{2 to 5} &= Delta x_{2 to 4} + Delta x_{4 to 5} \
&= 4.50~mathrm{m} + 1.75~mathrm{m}\
Delta x_{2 to 5} &= boxed{ 6.25~mathrm{m} }
end{align*}
$$
item [a)] $Delta x_{0 to 2} = 2.00~mathrm{m}$
item [b)] $Delta x_{2 to 5} = 6.25~mathrm{m}$
end{enumerate}