All Solutions
Page 90: Practice Problems
$$
begin{align*}
v_text{f} &= v_text{i} + at \
implies t &= frac{v_text{f} – v_text{i}}{a} \
&= frac{0 – 11.4~mathrm{m/s}}{-3.80~mathrm{m/s^{2}}} \
t &= boxed{ 3.00~mathrm{s} }
end{align*}
$$
t = 3.00~mathrm{s}
$$
$$
begin{align*}
v_text{f}^{2} &= v_text{i}^{2} + 2a Delta x \
implies a &= frac{v_text{f}^{2} – v_text{i}^{2}}{2 Delta x} \
&= frac{0 – left( 130~mathrm{m/s} right)^{2}}{2 left( 0.22~mathrm{m} right)} \
&= -38409.09091~mathrm{m/s^{2}} \
a &= -38000~mathrm{m/s^{2}}
end{align*}
$$
The magnitude of this acceleration must be
$$
boxed{ leftvert a rightvert
= 38000~mathrm{m/s^{2}} }
$$
leftvert a rightvert = 38000~mathrm{m/s^{2}}
$$
$$
begin{align*}
v_text{f}^{2} &= v_text{i}^{2} + 2a Delta x \
v_text{f} &= sqrt{ v_text{i}^{2} + 2a Delta x } \
&= sqrt{0 + 2 left( 106~mathrm{m/s^{2}} right) left( 3.20~mathrm{m} right)} \
&= 26.04611~mathrm{m/s} \
v_text{f} &= boxed{ 26.0~mathrm{m/s} }
end{align*}
$$
v_text{f} = 26.0~mathrm{m/s}
$$
subsection*{Known}
begin{align}
&v_f^2=v_i^2+2aDelta x, tx{for} a=tx{const}.notag\
&implies a=frac{v_f^2-v_i^2}{2Delta x}
end{align}
subsection*{Calculation}
Givens: $v_i=8.4 frac{tx{m}}{tx{s}}$, $Delta x=7.2 tx{m}$, $v_f=6.4 frac{tx{m}}{tx{s}}$\
From (1) we have:
begin{align*}
a=frac{left(6.4 frac{tx{m}}{tx{s}}right)^2-left(8.4 frac{tx{m}}{tx{s}}right)^2}{2(7.2 tx{m})}=-2.1 frac{tx{m}}{tx{s}^2}
end{align*}
subsection*{Conclusion}
vspace{2pt}
hrule
vspace{1pt}
begin{align*}
boxed{a=-2.1 frac{tx{m}}{tx{s}^2}}
end{align*}
The negative sign indicates that the acceleration is in the opposite direction to the velocity.
begin{align*}
boxed{a=-2.1 frac{text{m}}{text{s}^2}}
end{align*}
$$
tt{to find the bicycle acceleration, we will rearrange the velocity-position equation with $a$ as a subject:}
$$
$$
begin{align*}
v_{f}^{2}=v_{i}^{2}+2aDelta x Leftrightarrow a&=frac{v_{f}^{2}-v_{i}^{2}}{2Delta x}\
&=frac{(6.4frac{m}{s})^2-(8.4frac{m}{s^2})}{2*(7.2m)}\
&= boxed{textcolor{#4257b2}{-2.1frac{m}{s^2}}}
end{align*}
$$
tt{$a=-2.1frac{m}{s^2}$}
$$