All Solutions
Page 896: Lesson Check
$$
nu = frac{Delta E}{h},
$$
$h$ being Planck’s constant.
$$
E_n=-(13.6text{ eV})frac{1}{n^2}
$$
the absolute value of the energy decreases with the increase in $n$ (since we divide by $n^2$), but because there is minus sign in front then the actual energy increases with the increase in $n$ (it is less and less negative).
$$
begin{align*}
r_n &= (5.29 times 10^{-11} text{ m})n^2 \
r_6 &= (5.29 times 10^{-11} text{ m})6^2 \
&= 1.9 times 10^{-9} text{ m}
end{align*}
$$
The Bohr radius is $boxed{r_6 = 1.9 times 10^{-9} text{ m}}$
$$
begin{align*}
E_n &= -(13.6 text{ eV})dfrac{1}{n^2} \
E_6 &= -(13.6 text{ eV})dfrac{1}{6^2} \
&= -0.38 text{ eV}
end{align*}
$$
The energy at n = 6 is $boxed{-0.38 text{ eV}}$
b) $E_6 = -0.38$ eV
$$
r_6=(5.29times10^{-11}text{ m})6^2 =1.9times10^{-9}text{ m}.
$$
b) The energy is calculated as
$$
E_6=-(13.6text{ eV})frac{1}{6^2} = -0.38text{ eV}.
$$
$$
begin{align*}
r_n &= (5.29 times 10^{-11} text{ m})n^2 \
n^2 &= dfrac{2.56 times 10^{-8} text{ m}}{5.29 times 10^{-11} text{ m}} \
n &= sqrt{dfrac{2.56 times 10^{-8} text{ m}}{5.29 times 10^{-11} text{ m}}} \
&= 22
end{align*}
$$
Hence, the Bohr orbit of the electron is $boxed{text{n = 22}}$
n = 22
$$
$$
r_n= 2.56times 10^{-8}text{ m} = (5.29times10^{-11}text{ m})n^2
$$
we obtain
$$
n^2 = frac{2.56times 10^{-8}text{ m}}{5.29times10^{-11}text{ m}}Rightarrow n=sqrt{ frac{2.56times 10^{-8}text{ m}}{5.29times10^{-11}text{ m}}}=22
$$
so it is 22nd Bohr’s orbit.
$$
begin{align*}
E_n &= -(13.6 text{ eV})dfrac{1}{n^2} \
n^2 &= dfrac{-13.6 text{ eV}}{-0.54 text{ eV}} \
n &= sqrt{dfrac{13.6 text{ eV}}{0.54 text{ eV}}} \
&= 5
end{align*}
$$
Hence, the Bohr orbit of the electron is $boxed{text{n = 5}}$
n=5
$$
$$
E_n=-0.54text{ eV}=-13.6text{ eV }frac{1}{n^2}
$$
we obtain
$$
n^2 = frac{13.6text{ eV}}{0.54text{ ev}} Rightarrow n=sqrt{frac{13.6text{ eV}}{0.54text{ ev}}} =5
$$
so this is 5th Bohr’s orbit.
$$
lambda = frac{hc}{Delta E}
$$
where
$$
Delta E = E_2-E_1
$$
is the difference between the energies of the 2nd and 1st orbit.
Knowing that $E_n=-13.6text{ eV }frac{1}{n^2}$ for each $n$ we get $Delta E = 13.6text{ eV}(frac{1}{1}-frac{1}{2})$ and
$$
lambda = frac{hc}{13.6text{ eV}(frac{1}{1}-frac{1}{2})} = frac{hc}{13.6times 1.6times 10^{-19}text{ J}(frac{1}{1}-frac{1}{2})} =182.5text{ nm}.
$$
This wavelength is lower than the lower boundary of visible spectrum ($approx 380$ nm) so this is in the ultraviolet part.