All Solutions
Page 893: Practice Problems
$$
begin{align}
Delta E &= E_2 – E_3 \
&= 13.6 text{ eV} times left(dfrac{1}{2^2} – dfrac{1}{3^3}right) \
Delta E &= dfrac{hc}{lambda}
end{align}
$$
Using these equations, we can derive an equation which can solve for $lambda$, such that:
$$
begin{align*}
lambda &= dfrac{hc}{13.6 text{ eV} left(dfrac{1.6 times 10^{-19} text{ J}}{1 text{eV}}right) left(dfrac{1}{2^2} – dfrac{1}{3^3}right)} \
&= dfrac{(6.626 times 10^{-34} text{ Js})(3.0 times 10^8 text{m/s})}{13.6 text{ eV} left(dfrac{1.6 times 10^{-19} text{ J}}{1 text{ eV}}right) left(dfrac{1}{2^2} – dfrac{1}{3^3}right)} \
&= 657 text{ nm}
end{align*}
$$
Therefore, the wavelength of the red spectral line is $boxed{text{657 nm}}$
textbf{657 nm}
$$
$$
frac{hc}{lambda} =E_3-E_2 = 13.6text{ eV}left(frac{1}{2^2}-frac{1}{3^2}right).
$$
This yields
$$
lambda = frac{hc}{13.6text{ eV}left(frac{1}{2^2}-frac{1}{3^2}right)} = frac{hc}{13.6times1.6times10^{-19}text{ J}left(frac{1}{2^2}-frac{1}{3^2}right)} = 657text{ nm}.
$$
$$
begin{align}
Delta E &= E_4 – E_5 \
&= 13.6 text{ eV} times left(dfrac{1}{4^2} – dfrac{1}{5^3}right) \
Delta E &= hv
end{align}
$$
Using these equations, we can derive an equation which can solve for $v$, such that:
$$
begin{align*}
v &= dfrac{13.6 text{ eV} left(dfrac{1.6 times 10^{-19} text{ J}}{1 text{eV}}right) left(dfrac{1}{4^2} – dfrac{1}{5^3}right)}{h} \
&= 7.4 times 10^{13} text{ Hz}
end{align*}
$$
Therefore, the frequency is $boxed{7.4 times 10^{13} text{ Hz}}$
7.4 times 10^{13} text{ Hz}
$$
$$
hnu = E_5-E_4=13.6text{ eV}left(frac{1}{4^2}-frac{1}{5^2}right)
$$
and thus obtain
$$
nu=frac{13.6text{ eV}left(frac{1}{4^2}-frac{1}{5^2}right)}{h} =frac{13.6times 1.6times10^{-19}text{ J}left(frac{1}{4^2}-frac{1}{5^2}right)}{h}=7.4times10^{13}text{ Hz}.
$$