All Solutions
Page 891: Practice Problems
$E_n = – 0.278$ eV
$textbf{Find:}$ n
$textbf{Formula:}$
$$
begin{gather}
E_n = -(13.6 text{ eV}) times dfrac{1}{n^2}
end{gather}
$$
Using Eq (1), we can derive a formula to compute for n, such that:
$$
begin{align*}
n^2 &= dfrac{13.6 text{ eV}}{0.278 text{ eV}} \
n &= sqrt{dfrac{13.6 text{ eV}}{0.278 text{ eV}}} \
n &= 7
end{align*}
$$
Therefore, the Bohr orbit that has the energy of -0.278 eV is $boxed{text{n =7}}$
textbf{n =7}
$$
$$
E_n=-0.278text{ eV} =-(13.6text{ eV})frac{1}{n^2}
$$
we obtain
$$
n^2 = frac{13.6text{ eV}}{0.278text{ eV}}Rightarrow n=sqrt{ frac{13.6text{ eV}}{0.278text{ eV}}} = 7
$$
so this is the energy of seventh Bohr’s orbit.
$E_1 = -0.72$ eV
$E_2 = -0.46$ eV
$textbf{Find:}$ n, such that:
$$
begin{gather}
n_1 < n < n_2
end{gather}
$$
$textbf{Formula:}$
$$
begin{gather}
E_n = -(13.6 text{ eV}) times dfrac{1}{n^2}
end{gather}
$$
Using (2), we can derive an equation that can calculate $n_1$ and $n_2$, such that:
$$
begin{align*}
n_1 &= sqrt{dfrac{-(13.6 text{ eV})}{-0.72 text{ eV}}} \
&= 4.36 \
n_2 &= sqrt{dfrac{-(13.6 text{ eV})}{-0.46 text{ eV}}} \
&= 5.43 \
end{align*}
$$
Using the relationship stated in (1):
$$
begin{gather*}
4.36 < n < 5.43
end{gather*}
$$
Therefore, the Bohr orbit whose energy lies in the range of $E_1$ and $E_2$ is $boxed{text{n = 5}}$
textbf{n = 5}
$$
$$
E_n=-(13.6text{ eV})frac{1}{n^2}
$$
we obtain
$$
-0.72text{ eV}<-(13.6text{ eV})frac{1}{n^2}frac{1}{n^2}>0.034.
$$
Now putting everything to the power of minus one, which would again change inequality signs we get
$$
19<n^2<30.
$$
The only natural number satisfying this is $n=5$ which is the required quantum number.