Physics
Physics
1st Edition
Walker
ISBN: 9780133256925
Textbook solutions

All Solutions

Page 88: Practice Problems

Exercise 26
Step 1
1 of 3
In this problem, we find the time it takes for the drag racer in Guided Example 3.8 to reach $x_text{f} = 5.00~mathrm{m}$. It accelerates from rest with rate $a = 7.40~mathrm{m/s^{2}}$. It starts from rest, so $x_text{i} = 0$ and $v_text{i} = 0$.
Step 2
2 of 3
The equation of motion is

$$
begin{align*}
x_text{f} &= x_text{i} + v_text{i}t + frac{1}{2}at^{2} \
5.00~mathrm{m} &= 0 + 0 + frac{1}{2} left( 7.40~mathrm{m/s^{2}} right) t^{2} \
implies t^{2} &= frac{2 left( 5.00~mathrm{m} right)}{7.40~mathrm{m/s^{2}}} \
t &= sqrt{ frac{2 left( 5.00~mathrm{m} right)}{7.40~mathrm{m/s^{2}}} } \
&= 1.16248~mathrm{s} \
t &= boxed{ 1.16~mathrm{s} }
end{align*}
$$

Result
3 of 3
$$
t = 1.16~mathrm{s}
$$
Exercise 27
Step 1
1 of 2
$$
textbf{Concept :}
$$

The position-time equation for constant acceleration can be used to calculate the displacement of the sled.

$$
textbf{Solution :}
$$

Substituting values in the equation

$$
x_f=x_i+v_i t+frac{1}{2}at^2=0+frac{1}{2}at^2
$$

$$
=0+(1.2m/s)(4.0s)+frac{1}{2}(1.8m/s^2)(4.0s)^2=color{#4257b2} boxed{bf 19m}
$$

Result
2 of 2
$$
x_f=19m
$$
Exercise 28
Step 1
1 of 3
In this problem, a horse accelerates for time $t = 1~mathrm{s}$ and covers a distance $D$. We see what happens to the distance covered when it accelerates for $t = 2~mathrm{s}$. It accelerates from rest, so $x_text{i} = 0$ and $v_text{i} = 0$.
Step 2
2 of 3
We find the relationship between the covered distance $x_text{f}$ and $t$

$$
begin{align*}
x_text{f} &= x_text{i} + v_text{i}t + frac{1}{2}at^{2} \
&= 0 + 0 + frac{1}{2}at^{2} \
x_text{f} &= left( frac{1}{2}a right)t^{2} \
implies x_text{f} &propto t^{2}
end{align*}
$$

The time of travel is doubled, so the distance $x_text{f}$ must be scaled by $(2)^{2} = 4$. Hence, the new distance covered is
$$
boxed{4D}
$$

Result
3 of 3
$$
4D
$$
Exercise 29
Solution 1
Solution 2
Step 1
1 of 4
In this problem, we are given that a cheetah can accelerate from rest to $v = 25.0~mathrm{m/s}$ in time $t_{1} = 6.00~mathrm{s}$. Assuming that the acceleration is constant, we find the distance it cover in the first $t = 3.00~mathrm{s}$.
Step 2
2 of 4
First, we find the acceleration

$$
begin{align*}
v &= 0 + at_{1} \
implies a &= frac{v}{t_{1}} \
&= frac{25.0~mathrm{m/s}}{6.00~mathrm{s}} \
a &= frac{25}{6}~mathrm{m/s^{2}}
end{align*}
$$

Step 3
3 of 4
Now, to find the distance traveled.

$$
begin{align*}
x_text{f} &= x_text{i} + v_text{i}t + frac{1}{2}at^{2} \
&= 0 + 0 + frac{1}{2}left(frac{25}{6}~mathrm{m/s^{2}} right) left( 3.00~mathrm{s} right)^{2} \
&= 18.75~mathrm{m} \
x_text{f} &= boxed{ 18.8~mathrm{m} }
end{align*}
$$

Result
4 of 4
$$
18.8~mathrm{m}
$$
Step 1
1 of 4
To compute the distance covered in $3.00 s$ by the cheetah, acceleration should first be computed using the equation

$$
v_{f} = v_{i} + at
$$

Step 2
2 of 4
Since we need the acceleration, we can rewrite it and solve it as

$$
a = dfrac{v_{f} – v_{i}}{t} = dfrac{25.0m/s – 0}{6.00 s} = 4.17m/s
$$

Step 3
3 of 4
Using the computed acceleration, the distance travelled in $3.00s$ can be computed

$$
x_{f} = x_{i} + v_{i}t + dfrac{1}{2}at^{2} = 0 + 0(3.00s) + dfrac{1}{2}(4.17m/s)(3.00 s)^{2}
$$

$$
x_{f} = 18.75 m
$$

$$
boxed{x_{f} = 18.8 m}
$$

Result
4 of 4
$$
x_{f} = 18.8 m
$$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New