All Solutions
Page 88: Practice Problems
$$
begin{align*}
x_text{f} &= x_text{i} + v_text{i}t + frac{1}{2}at^{2} \
5.00~mathrm{m} &= 0 + 0 + frac{1}{2} left( 7.40~mathrm{m/s^{2}} right) t^{2} \
implies t^{2} &= frac{2 left( 5.00~mathrm{m} right)}{7.40~mathrm{m/s^{2}}} \
t &= sqrt{ frac{2 left( 5.00~mathrm{m} right)}{7.40~mathrm{m/s^{2}}} } \
&= 1.16248~mathrm{s} \
t &= boxed{ 1.16~mathrm{s} }
end{align*}
$$
t = 1.16~mathrm{s}
$$
textbf{Concept :}
$$
The position-time equation for constant acceleration can be used to calculate the displacement of the sled.
$$
textbf{Solution :}
$$
Substituting values in the equation
$$
x_f=x_i+v_i t+frac{1}{2}at^2=0+frac{1}{2}at^2
$$
$$
=0+(1.2m/s)(4.0s)+frac{1}{2}(1.8m/s^2)(4.0s)^2=color{#4257b2} boxed{bf 19m}
$$
x_f=19m
$$
$$
begin{align*}
x_text{f} &= x_text{i} + v_text{i}t + frac{1}{2}at^{2} \
&= 0 + 0 + frac{1}{2}at^{2} \
x_text{f} &= left( frac{1}{2}a right)t^{2} \
implies x_text{f} &propto t^{2}
end{align*}
$$
The time of travel is doubled, so the distance $x_text{f}$ must be scaled by $(2)^{2} = 4$. Hence, the new distance covered is
$$
boxed{4D}
$$
4D
$$
$$
begin{align*}
v &= 0 + at_{1} \
implies a &= frac{v}{t_{1}} \
&= frac{25.0~mathrm{m/s}}{6.00~mathrm{s}} \
a &= frac{25}{6}~mathrm{m/s^{2}}
end{align*}
$$
$$
begin{align*}
x_text{f} &= x_text{i} + v_text{i}t + frac{1}{2}at^{2} \
&= 0 + 0 + frac{1}{2}left(frac{25}{6}~mathrm{m/s^{2}} right) left( 3.00~mathrm{s} right)^{2} \
&= 18.75~mathrm{m} \
x_text{f} &= boxed{ 18.8~mathrm{m} }
end{align*}
$$
18.8~mathrm{m}
$$
$$
v_{f} = v_{i} + at
$$
$$
a = dfrac{v_{f} – v_{i}}{t} = dfrac{25.0m/s – 0}{6.00 s} = 4.17m/s
$$
$$
x_{f} = x_{i} + v_{i}t + dfrac{1}{2}at^{2} = 0 + 0(3.00s) + dfrac{1}{2}(4.17m/s)(3.00 s)^{2}
$$
$$
x_{f} = 18.75 m
$$
$$
boxed{x_{f} = 18.8 m}
$$
x_{f} = 18.8 m
$$