All Solutions
Page 867: Lesson Check
Also macroscopic momenta are really large so from De Broglie’s relation $lambda = h/p$ we see that the wavelength is then really small and thus the wavelike effects are unnoticeable.
$$
E=frac{p^2}{2m}
$$
which yields
$$
p=sqrt{2mE}
$$
we see that for fixed value of $E$ the greater the mass, the greater the momentum. Since by De Broglie’s relation wavelength is inversely proportional to the momentum the greater the momentum the smaller the wavelength so we finally conclude that since the neutron has greater mass that the electron, having the same kinetic energy it has smaller wavelength.
$lambda = 6.4 times 10^{-7}$ m
$textbf{Find:}$ speed of the proton, $v$
We use the de Broglie wave equation to calculate for $v$, such that:
$$
begin{align*}
lambda &= dfrac{h}{p} = dfrac{h}{mv} \
v &= dfrac{h}{m lambda} \
text{mass of the proton is} 1.67 times 10^{-24} text{ kg} \
&= dfrac{6.626 times 10^{-34} text{ Js}}{(1.67 times 10^{-24} text{ kg}) times (6.4 times 10^{-7} text{ m}} \
&= boxed{6.2 times 10^{-4} text{ m/s}}
end{align*}
$$
v = 6.2 times 10^{-4} text{ m/s}
$$
$$
lambda = frac{h}{p}.
$$
Knowing that the mometum by definition is $p=mv$ we get
$$
lambda = frac{h}{mv}.
$$
Solving this for $v$ we obtain
$$
v=frac{h}{mlambda} = frac{6.62times10^{-34}text{ J s}}{1.67times 10^{-24}text{ kg}times 6.4times 10^{-7}text{ m}} =6.2times 10^{-4}text{ m/s}.
$$
$m = 6.6 times 10^{-27}$ kg
$v = 4.1 times 10^{4}$ m/s
$textbf{Find:}$ de Broglie wavelength, $lambda$
We use the de Broglie wave equation to calculate for $lambda$, such that:
$$
begin{align*}
lambda &= dfrac{h}{p} \
&= dfrac{h}{mv} \
&= dfrac{6.626 times 10^{-34} text{ Js}}{(6.6 times 10^{-27} text{ kg}) times (4.1 times 10^4 text{ m/s})} \
&= boxed{2.45 times 10^{-12} text{ m}}
end{align*}
$$
lambda = 2.45 times 10^{-12} text{ m}
$$
$$
lambda = frac{h}{p}.
$$
Since by definition
$$
p=mv
$$
we get
$$
lambda = frac{h}{mv}.
$$
Note that the mass of helium atom is four times the mass of a proton so we have
$$
lambda =frac{6.62times10^{-34}text{ J s}}{6.6times10^{-27}text{ kg}times4.1times10^{4}text{ m/s}} = 2.45times10^{-12}text{ m}.
$$
$lambda = 3.1 times 10^{-11}$ m
$textbf{Find:}$ Kinetic energy, $KE$
Energy can be calculated using the formula:
$$
begin{gather}
E = dfrac{p^2}{2m}
end{gather}
$$
We use the de Broglie wavelength equation to find a relationship between $lambda$ and $p$ as follows:
$$
begin{gather}
lambda = dfrac{h}{p} \
p = dfrac{h}{lambda}
end{gather}
$$
Combining Eq(1) and Eq(3) we can solve for $KE$:
$$
begin{align*}
KE &= dfrac{h^2}{2mlambda^2} \
&= dfrac{(6.626 times 10^{-34})^2}{2 times (1.67 times 10^{-24}) times (3.1 times 10^{-11})^2} \
&= 1.37 times 10^{-22} text{ J} \
text{converting this to eV:} \
&= 1.37 times 10^{-22} text{ J} times left(dfrac{1 text{ eV}}{1.6 times 10^{-19} text{ J}}right)\
&= boxed{8.5 times 10^{-4} text{ eV}}
end{align*}
$$
KE = 8.5 times 10^{-4} text{ eV}
$$
$$
p=frac{h}{lambda}.
$$
Since the kinetic energy is related to the momentum by
$$
E=frac{p^2}{2m}
$$
putting in for $p$ we get
$$
E=frac{h^2}{2mlambda^2} = frac{(6.62times10^{-34}text{ J s})^2}{2times1.67times10^{-24}text{ kg }(3.1times10^{-11}text{ m})^2} = 1.37times10^{-22}text{ J}.
$$
This is in electron volts
$$
E=1.37times10^{-22}frac{1}{1.6times10^{-19}}text{ eV}=8.6times10^{ -4}text{ eV}.
$$
$p = 5.7 times 10^{-26} text{ kgm/s}$
$textbf{Formula:} lambda = dfrac{h}{p}$
a) Since the electron and proton both have equal momentum, their de Broglie wavelengths are also $boxed{text{equal}}$.
b) We calculate $lambda$ as follows:
$$
begin{align*}
lambda &= dfrac{6.626 times 10^{-34}}{5.7 times 10^{-26}} \
&= boxed{1.16 times 10^{-8} text{ m}}
end{align*}
$$
b) $lambda = 1.16 times 10^{-8}$ m
b) From the mentioned relation
$$
lambda = frac{h}{p} = frac{6.62times10^{-34}text{ J s}}{5.7times 10^{-26}text{ kg m/s}} =1.16times10^{-8}text{ m}.
$$