All Solutions
Page 863: Lesson Check
$T = 5800$ K
$textbf{Find:} f_{peak}$
We can compute for $f_{peak}$ using Wien’s displacement law as follows:
$$
begin{align*}
f_{peak} &= (5.88 times 10^{10} text{ Hz}) times 5800 text{ K} \
&= boxed{3.4 times 10^{14} text{Hz}}
end{align*}
$$
f_{peak} = 3.4 times 10^{14} text{Hz}
$$
$$
nu_{peak} = 5.88times10^{10}text{ Hz}times 5800text{ K} =3.4times 10^{14}text{ Hz}.
$$
$E = 1.2$ J
$v = 0.82$ Hz
$textbf{Find}$ quantum number, $n$
We can calculate $n$ using the formula for quantized energy such that:
$$
begin{align*}
E &= nhf \
n &= dfrac{E}{hf} \
&= dfrac{1.2 text{ J}}{6.626 times 10^{-34} text{ Js} times 0.82 text{ Hz}} \
&= boxed{2.2 times 10^{33}}
end{align*}
$$
n = 2.2 times 10^{33}
$$
$$
n=frac{E}{hnu}=frac{1.2text{ J}}{0.82text{ Hz}times6.62times10^{-34}text{ J s}} =2.2times 10^{33}.
$$
$E_1 = 4.2 times 10^{-19} text{ J}$
$E_2 = 1.9 text{ eV} times left(dfrac{1.6 times 10^{-19} text{ J}}{1 text{ eV}}right) = 3.04 times 10^{-19} text{ J}$
To calculate for the frequencies, we use the following formula:
$$
begin{gather}
E = hf
end{gather}
$$
a) Using Eq (1), we can calculate for $f_1$ as follows:
$$
begin{align*}
f_1 &= dfrac{E}{h} \
&= dfrac{4.2 times 10^{-19} text{ J}}{6.626 times 10^{-34} text{ Js}} \
&= boxed{6.3 times 10^{14} text{ Hz}}
end{align*}
$$
$$
begin{align*}
f_2 &= dfrac{E}{h} \
&= dfrac{3.04 times 10^{-19} text{ J}}{6.626 times 10^{-34} text{ Js}} \
&= boxed{4.6 times 10^{14} text{ Hz}}
end{align*}
$$
b) $4.6 times 10^{14}$ Hz
$$
nu = frac{E}{h}=frac{4.2times10^{-19}text{ J}}{6.62times 10^{-34}text{ J s}}=6.3times10^{14}text{ Hz}.
$$
b)
$$
nu = frac{E}{h} = frac{1.9text{ eV}}{6.62times10^{-34}text{ J s}} = frac{1.9times1.6times 10^{-19}text{ J}}{6.62times 10^{-34}text{ J s}} = 4.6times10^{14}text{ Hz}.
$$
$f = 9.3 times 10^{14}$ Hz
$W_o = 3.6 text{ eV} times left(dfrac{1.6 times 10^{-19} text{ J}}{1 text{ eV}}right) =5.76 times 10^{-19} text{ J}$
$textbf{Find:} KE_{max}$
To calculate for $KE_{max}$, we use the Einstein’s equation for the photoelectric effect as follows:
$$
begin{align*}
E &= hf – W_o \
KE_{max} &= hf – W_o \
&= (6.626 times 10^{-34} text{ Js} times 9.3 times 10^{14} text{ Hz}) – 5.76 times 10^{-19} text{ J} \
&= boxed{4.02 times 10^{-20} text{ J}}
end{align*}
$$
KE_{max} = 4.02 times 10^{-20} text{ J}
$$
$$
hnu = W_0 + E_k.
$$
This yields for maximum kinetic energy
$$
E_k = hnu – W_0 = 6.62times10^{-34}text{ J s}times 9.3times 10^{14}text{ Hz}- 3.6times1.6times10^{-19}text{ J} = 0.4times 10^{-19}text{ J}.
$$