All Solutions
Page 859: Practice Problems
textbf{Given: }
$$
$f = 1.00 times 10^{13}$ Hz
$textbf{Find: }$ Energy carried by 1 mole of photons
The energy of one photon can be calculated using the formula: $E = hf$
Since, we want to know how much energy is carried by 1 mole of photons, hence we use an alternative formula such that:
$E = nhvf$, where $n$ is the number of photons in 1 mole given by the Avogrado’s number = $6.0 time 10^{23}$
Using these we can now calculate $E$, such that:
$$
begin{align*}
E &= nhf \
&= (6.0 times 10^{23}) times (6.626 times 10^{-34} text{ Js}) times (1.00 times 10^{13} text{ Hz}) \
&= 3.98 text{ kJ}
end{align*}
$$
Hence, the energy carried by 1 mole of photons is $boxed{text{3.98 kJ}}$
E = 3.98 text{ kJ}
$$
$$
E=N_AE_0=N_Ahnu = 6times10^{23}times6.62times10^{-34}text{ J s}times1.00times10^{13}text{ Hz} = 3.97text{ kJ}.
$$
$f = 8.2 times 10^{14}$ Hz
$textbf{Find: }$ Energy of photon (in eV)
We can calculate the energy of the photon as follows:
$$
begin{align*}
E &= hf \
&= (6.626 times 10^{-34} text{ Js}) times (8.2 times 10^{14} text{ Hz}) \
&= 5.43 times 10^{-19} text{ J} \
text{converting this to eV we have:} \
E &= 5.43 times 10^{-19} text{ J} times dfrac{1 text{ eV}}{1.6 times 10^{-19} text{ J}} \
&= boxed{3.4 text{ eV}}
end{align*}
$$
E = 3.4 text{ eV}
$$
$$
E=hnu = 6.62times10^{-34}text{ J s} times 8.2times 10^{14}text{ Hz} = 5.43times 10^{-19}text{ J}.
$$
Knowing that $1text{ev} = 1.6times10^{-19}text{ J}$ we conclude that $1text{ J} = frac{1}{1.6times10^{-19}}text{ eV} = 6.25times 10^{18}text{ eV}.$ Finally this gives
$$
E=5.43times10^{-19}times 6.25times 10^{18}text{ eV} = 3.4text{ eV}.
$$