Physics
Physics
1st Edition
Walker
ISBN: 9780133256925
Textbook solutions

All Solutions

Page 849: Standardized Test Prep

Exercise 2
Step 1
1 of 2
The magnetic flux through the loop is given by:

$$
begin{align*}
Phi&=Bcdot{A}cdotcostheta\
Phi&=Bcdot{L}cdot{W}cdotcos{0text{textdegree}}\
Phi&=Bcdot{Lcdot{W}}
end{align*}
$$

$$
boxed{text{The correct answer is: $C$.}}
$$

Result
2 of 2
The correct answer is: $C$.
Exercise 3
Step 1
1 of 3
We have given data:

$$
begin{align*}
B&=200text{ T}\
W&=0.1text{ m}\
L&=0.2text{ m}\
v&=0.5 frac{text{m}}{text{s}}\
N&=1\
R&=400text{ $Omega$}
end{align*}
$$

The induced emf force is given by the equation:

$$
begin{align}
varepsilon&=-Ncdotfrac{DeltaPhi}{Delta{t}}
end{align}
$$

Let’s first compute the change in magnetic flux. In initial moment the complete flux is inside the magnetic field, so the magnetic flux through the loop is:

$$
begin{align*}
Phi_i&=Bcdot{A}cdotcos{theta}\
Phi_i&=Bcdot{Wcdot{L}}
end{align*}
$$

At the final moment the loop is just $frac{1}{3}$ inside the magnetic field so the magnetic flux through it will be:

$$
begin{align*}
Phi_f&=Bcdot{A}cdotcos{theta}\
Phi_f&=Bcdotfrac{1}{3}cdot{Wcdot{L}}
end{align*}
$$

And the change in magnetic flux will be:

$$
begin{align*}
DeltaPhi&=Phi_f-Phi_i\
DeltaPhi&=Bcdotfrac{1}{3}cdot{Wcdot{L}}-Bcdot{Wcdot{L}}\
DeltaPhi&=-frac{2}{3}cdot{B}cdot{W}cdot{L}
end{align*}
$$

Step 2
2 of 3
We also need to find the time in witch the magnetic flux make this change. We have the velocity of loop and know that the moved distance is $frac{2}{3}$ of it’s length.

$$
begin{align*}
v&=frac{Delta{x}}{Delta{t}}\
Delta{t}&=frac{Delta{x}}{v}\
Delta{t}&=frac{frac{2}{3}cdot{L}}{v}\
Delta{t}&=frac{2cdot{L}}{3cdot{v}}
end{align*}
$$

Now, we are able to substitute in a first equation and to compute the induced emf:

$$
begin{align*}
varepsilon&=-Ncdotfrac{DeltaPhi}{Delta{t}}\
varepsilon&=-Ncdotfrac{-frac{2}{3}cdot{B}cdot{W}cdot{L}}{frac{2cdot{L}}{3cdot{v}}}\
varepsilon&=Ncdot{B}cdot{W}cdot{v}
end{align*}
$$

And the current through the loop is:

$$
begin{align*}
I&=frac{varepsilon}{R}\
I&=frac{Ncdot{B}cdot{W}cdot{v}}{R}\
I&=frac{1cdot{200text{ T}}cdot{0.1text{ m}}cdot{0.5 frac{text{m}}{text{s}}}}{400text{ $Omega$}}\
I&=0.025text{ A}
end{align*}
$$

$$
boxed{text{The correct answer is $B$}}
$$

Result
3 of 3
The correct answer is $B$.
Exercise 4
Step 1
1 of 2
We have given:

$$
begin{align*}
V_P&=120text{ V}\
I_P&=0.3text{ A}\
V_S&=9text{ V}
end{align*}
$$

The transformer equation is given by:

$$
begin{align*}
frac{V_P}{V_S}&=frac{I_S}{I_P}\
I_S&=frac{V_P}{V_S}cdot{I_P}\
I_S&=frac{120text{ V}}{9text{ V}}cdot{0.3text{ A}}\
I_S&=4text{A}
end{align*}
$$

And the power of the transformer is:

$$
begin{align*}
P&=I_Pcdot{V_P}=I_Scdot{V_S}\
P&=0.3text{ A}cdot{120text{ V}}\
P&=36text{ W}
end{align*}
$$

$$
boxed{text{The correct answer is $A$.}}
$$

Result
2 of 2
The correct answer is $A$.
Exercise 5
Step 1
1 of 2
The loop is inside the magnetic field which direction is out of the paper, by the Lenz’s law the direction of the induced magnetic field always oppose the the magnetic field that induce it. So the induced magnetic field direction is in to a paper.

This is possible only if the current direction inside the loop is clockwise.

$$
boxed{text{The correct answer is $A$.}}
$$

Result
2 of 2
The correct answer is $A$
Exercise 6
Step 1
1 of 2
If we spin the loop around the axis which is perpendicular to a paper will not change the magnetic flux through it, because the magnetic field is constant, the area of the loop and also the angle not be changed

If we move the loopback and forward the results will be the same. There is no change in magnetic flux and also can’t is the change of current.

In the case of rotation of the loop, the area of the loop will be changed because the angle between the loop surface and the magnetic field line will be changed during rotation, so there will be the change of magnetic flux and also the change in current.

$$
boxed{text{The correct answer is $C$}}
$$

Result
2 of 2
The correct answer is $C$.
Exercise 7
Step 1
1 of 2
We have given:

$$
begin{align*}
N&=10\
d&=0.2text{ m}\
R&=10text{ k$Omega$}=10cdot{10^3}text{ $Omega$}\
frac{Delta{B}}{Delta{t}}&=100 frac{text{T}}{text{s}}
end{align*}
$$

The induced emf is given with the equation:

$$
begin{align*}
varepsilon&=-Ncdotfrac{DeltaPhi}{Delta{t}}=Ncdot{A}cdotfrac{Delta{B}}{Delta{t}}
end{align*}
$$

The area of the single loop is the area of the circle of wire:

$$
begin{align*}
A&=R^2cdotpi=left(frac{d}{2}right)^2cdotpi
end{align*}
$$

Let’s substitute and compute the induced emf:

$$
begin{align*}
varepsilon&=Ncdot{A}cdotfrac{Delta{B}}{Delta{t}}\
varepsilon&=Ncdot{left(frac{d}{2}right)^2cdotpi}cdotfrac{Delta{B}}{Delta{t}}\
varepsilon&=10cdot{left(frac{0.2text{ m}}{2}right)^2cdotpi}cdot{100 frac{text{T}}{text{s}}}
end{align*}
$$

$$
boxed{varepsilon=31.4text{ V}}
$$

Now, let’s compute the current through the loop, we know the emf and the resistance of the loop:

$$
begin{align*}
I&=frac{varepsilon}{R}\
I&=frac{31.4text{ V}}{10cdot{10^3}text{ $Omega$}}
end{align*}
$$

$$
boxed{I=3.14text{ mA}}
$$

Result
2 of 2
$varepsilon=31.4text{ V}$, $I=3.14text{ mA}$.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New