Physics
Physics
1st Edition
Walker
ISBN: 9780133256925
Textbook solutions

All Solutions

Page 844: Assessment

Exercise 43
Step 1
1 of 2
The magnetic field represents the physical field around the natural or electromagnet which makes influence a near magnetic material. On the other hand, the magnetic flux represents the number of magnetic field lines in some area surface. So the magnetic field is a physical phenomenon and the magnetic flux is just a number that describes the magnetic field.
Result
2 of 2
The magnetic field is physical phenomenon and the the magnetic flux is just a number witch describe magnetic field.
Exercise 44
Step 1
1 of 2
In order that the ring is dropped, there is a change in magnetic flux, because the ring moves in a magnetic field. There will be induced emf and the current that will flow through the ring. But if the ring has brake there will be also a change in magnetic flux and the emf will be induced. But there will not be the flow of current because of the brake in the ring.
Result
2 of 2
There will be change in a magnetic flux, induced emf, but not the current because the brake in the ring.
Exercise 45
Step 1
1 of 2
During the fall of the magnet through the tube, there is a change in magnetic flux, so there will be induced Eddy current in a tube with a different direction regarding the field of the magnet so that the magnetic field will act on the magnet with a force that slows down the magnet drop.
Result
2 of 2
Because the induced Eddy current.
Exercise 46
Step 1
1 of 2
When the plate moves through the two magnetic poles there is induced Eddy current, which reduces the osculation and helps the balancing arm to faster achieve rest position.
Result
2 of 2
The plate reduce oscillation with the induced Eddy current witch induce the magnetic field with the opposite direction.
Exercise 47
Step 1
1 of 2
When we close the switch the current from the battery starts to flow, which produces the magnetic field in the coil and also the magnetic road. Regarding the change in magnetic flux, there will be induced current in the ring witch is in the opposite direction regarding the magnetic field in the coil so the ring will fly.
Result
2 of 2
Because of magnetic induction there will be induced magnetic field in the ring with the opposite direction regarding the field of the coil.
Exercise 48
Step 1
1 of 2
The emf is given by the equation:

$$
begin{align*}
varepsilon&=-Ncdotfrac{DeltaPhi}{Delta{t}}\
varepsilon&=-Ncdotfrac{Delta{B}cdot{A}cdotcostheta}{Delta{t}}\
varepsilon&=-Ncdot{A}cdotcosthetacdotfrac{Delta{B}}{Delta{t}}
end{align*}
$$

So the grater change of ratio $frac{Delta{B}}{Delta{t}}$, greater will be $varepsilon$.

In the area $D$ and $F$ there is no change in a magnetic field, so the emf will be zero.

In the area $E$ there is the steepest slope, so the emf will rich the highest value.

After the area $E$ the sharpest slope is in a segment $C$, then $B$ and $A$.

So if we compare and order in increasing order:

$$
boxed{D=F<A<B<C<E}
$$

Result
2 of 2
$$
D=F<A<B<C<E
$$
Exercise 49
Step 1
1 of 2
$bold{a)}$

At position one, the induced current will be clockwise. At that position, the ring entering the magnetic field so the current will flow that way in order to reduce the change of magnetic flux, and due to this the induced current magnetic field will act in the opposite direction.

At position two, there is no change in magnetic flux so there can’t be induced current.

At position three, the induced current will be counterclockwise. As the ring leaves the magnetic field the induced current will try to increase the magnetic flux.

$bold{b)}$

Regarding the upper answer, the best description is:

The induced current is clockwise at 1 to oppose the field, zero at 2 because the field is uniform, and counterclockwise at 3 to maintain the field.

Result
2 of 2
a) Position one – clockwise, position two – zero, position three – counterclockwise.

b) The correct answer is $A$.

Exercise 50
Step 1
1 of 2
We have given:

$$
begin{align*}
B&=0.055text{ T}\
theta&=16text{textdegree}\
R&=3.1text{ cm}=0.031text{ m}
end{align*}
$$

And we need to find the magnitude of the magnetic flux, witch is given by the equation:

$$
begin{align*}
Phi&=Bcdot{A}cdotcostheta\
Phi&=Bcdot{R^2cdotpi}cdotcostheta
end{align*}
$$

Let’s substitute and compute:

$$
begin{align*}
Phi&=0.055text{ T}cdot{(0.031text{ m})^2cdotpi}cdotcos{16text{textdegree}}
end{align*}
$$

$$
boxed{Phi=1.6cdot{10^{-4}} text{T}cdottext{m}^2}
$$

Result
2 of 2
$$
Phi=1.6cdot{10^{-4}} text{T}cdottext{m}^2
$$
Exercise 51
Step 1
1 of 2
We have given:

$$
begin{align*}
B&=0.025text{ T}\
L&=32.5text{ cm}=0.325text{ m}\
W&=12text{ cm}=0.12text{ m}\
H&=10text{ cm}=0.1text{ m}
end{align*}
$$

And we need to find the magnitude of the magnetic flux through the each side of the box, witch is given by the equation:

$$
begin{align*}
Phi&=Bcdot{A}cdotcostheta
end{align*}
$$

As we see from the picture the sides of the box are parallel with the magnetic field lines. So the angle between the box sides and normal layer to a magnetic field lines is $90text{textdegree}$.

And the angle between the box bottom and the layer normal to a magnetic field lines is $0text{textdegree}$.
So, the flux through the box sides will be:

$$
begin{align*}
Phi_{sides}&=Bcdot{A}cdotcos theta\
Phi_{sides}&=Bcdot{A}cdotcos{ 90}
end{align*}
$$

$$
boxed{Phi_{sides}=0}
$$

And the flux through the box bottom is:

$$
begin{align*}
Phi_{bottom}&=Bcdot{A}cdotcos theta\
Phi_{bottom}&=Bcdot{Wcdot{L}}cdotcos{ 0}\
Phi_{bottom}&=0.025text{ T}cdot{0.12text{ m}cdot{0.325text{ m}}}
end{align*}
$$

$$
boxed{Phi_{bottom}=9.75cdot{10^{-4}}text{ T}cdottext{ m}^2}
$$

Result
2 of 2
$Phi_{sides}=0$

$$
Phi_{bottom}=9.75cdot{10^{-4}}text{ T}cdottext{ m}^2
$$

Exercise 52
Step 1
1 of 2
We have given:

$$
begin{align*}
Phi&=4.8cdot{10^{-5}} text{T}cdottext{m}^2\
theta&=47text{textdegree}\
a&=5.1text{ cm}=0.051text{ m}\
b&=6.8text{ cm}=0.068text{ m}
end{align*}
$$

And we need to find the magnitude of the magnetic field, witch is given by the equation:

$$
begin{align*}
Phi&=Bcdot{A}cdotcos theta\
B&=frac{Phi}{Acdotcos theta}
end{align*}
$$

Where the area of the rectangle is given by:

$$
begin{align*}
A&=acdot{b}
end{align*}
$$

Let’s now substitute all given and compute:

$$
begin{align*}
B&=frac{Phi}{acdot{b}cdotcos theta}\
B&=frac{4.8cdot{10^{-5}} text{T}cdottext{m}^2}{0.051text{ m}cdot{0.068text{ m}}cdotcos{47text{textdegree}}}
end{align*}
$$

$$
boxed{B=2.03cdot{10^{-2}}text{ T}}
$$

Result
2 of 2
$$
B=2.03cdot{10^{-2}}text{ T}
$$
Exercise 53
Step 1
1 of 2
We have given:

$$
begin{align*}
B_v&=4.2cdot{10^{-5}} text{T}\
B_h&=2.6cdot{10^{-5}} text{T}\
theta_v&=0text{textdegree}\
theta_h&=90text{textdegree}\
a&=22text{ m}\
b&=18text{ m}
end{align*}
$$

And we need to find the magnitude of the magnetic flux through the floor, witch is given by the equation:

$$
begin{align*}
Phi&=Bcdot{A}cdotcos theta
end{align*}
$$

But the complete magnetic flux through the floor will be the sum of vertical and horizontal component, so let’s compute each component separately.

The area of the floor:

$$
begin{align*}
A&=acdot{b}
end{align*}
$$

Let’s first compute the horizontal component:

$$
begin{align*}
Phi_h&=B_hcdot{A}cdotcos theta_h\
Phi_h&=B_hcdot{A}cdotcos{90text{textdegree}}\
Phi_h&=0
end{align*}
$$

And for the vertical component we have:

$$
begin{align*}
Phi_v&=B_vcdot{acdot{b}}cdotcos theta_v\
Phi_v&=4.2cdot{10^{-5}} text{T}cdot{22text{ m}cdot{18text{ m}}}cdotcos{0text{textdegree}}\
Phi_v&=1.66cdot{10^{-2}}text{ Wb}
end{align*}
$$

And the complete magnetic flux through the floor will be:

$$
begin{align*}
Phi&=Phi_v+Phi_h\
Phi&=1.66cdot{10^{-2}}text{ Wb}+0
end{align*}
$$

$$
boxed{Phi=1.66cdot{10^{-2}}text{ Wb}}
$$

Result
2 of 2
$$
Phi=1.66cdot{10^{-2}}text{ Wb}
$$
Exercise 54
Step 1
1 of 2
We have given:

$$
begin{align*}
B&=1.7text{ T}\
theta&=0text{textdegree}\
l&=2.5text{ m}\
d&=1.2text{ m}
end{align*}
$$

And we need to find the magnitude of the magnetic flux through the solenoid, witch is given by the equation:

$$
begin{align*}
Phi&=Bcdot{A}cdotcos theta
end{align*}
$$

All the lines of the magnetic field always goes through the solenoid, so the angle between the crosssection area of solenoid and the area normal to a direction of the magnetic field lines is zero.
The area of the solenoid crosssection is the area of the circle:

$$
begin{align*}
A&=left(frac{d}{2}right)^2cdotpi
end{align*}
$$

Let’s substitute and compute the magnetic flux:

$$
begin{align*}
Phi&=Bcdot{A}cdotcos theta\
Phi&=Bcdot{left(frac{d}{2}right)^2cdotpi}cdotcos{0text{textdegree}}\
Phi&=1.7text{ T}cdot{left(frac{1.2text{ m}}{2}right)^2cdotpi}
end{align*}
$$

$$
boxed{Phi=1.92text{ Wb}}
$$

Result
2 of 2
$$
Phi=1.92text{ Wb}
$$
Exercise 55
Step 1
1 of 2
We have given:

$$
begin{align*}
B&=0.45text{ T}\
N&=53\
R&=15text{ cm}=0.15text{ m}\
Delta{t}&=0.12text{ s}
end{align*}
$$

And we need to find the magnitude of the induced emf:

$$
begin{align*}
varepsilon&=-frac{DeltaPhi}{Delta{t}}
end{align*}
$$

Where the change of the magnetic flux is given with:

$$
begin{align*}
DeltaPhi&=Ncdot{A}cdotDelta{B}\
DeltaPhi&=Ncdot{R^2cdotpi}cdotDelta{B}
end{align*}
$$

Let’s substitute and compute the induced emf:

$$
begin{align*}
varepsilon&=-frac{Ncdot{R^2cdotpi}cdotDelta{B}}{Delta{t}}\
varepsilon&=-frac{Ncdot{R^2cdotpi}cdot(B_f-B_i)}{Delta{t}}\
varepsilon&=-frac{53cdot{(0.15text{ m})^2cdotpi}cdot(0-0.45text{ T})}{0.12text{ s}}
end{align*}
$$

$$
boxed{varepsilon=14.05text{ V}}
$$

Result
2 of 2
$$
varepsilon=14.05text{ V}
$$
Exercise 56
Step 1
1 of 3
We have given:

$$
begin{align*}
N&=1
end{align*}
$$

And we need to find the magnitude of the induced emf:

$$
begin{align*}
varepsilon&=-frac{DeltaPhi}{Delta{t}}
end{align*}
$$

To calculate the induced emf we have to calculate the change of flux at the time sample, so we can take any two arbitrary points at the same slope, but we need to know the magnitude of the magnetic flux and the time at that points. It is easier to take the beginning and the endpoint of the slope.

$bold{a)}$

If we chose the beginning and the endpoint of slope:

At $t_i=0$ the magnetic flux is $Phi_i=0$.

At the $t_f=0.1text{ s}$ the magnetic flux is $Phi_f=10text{ Wb}$.
And the induced emf will be:

$$
begin{align*}
varepsilon&=-frac{Phi_f-Phi_i}{t_f-t_i}\
varepsilon&=-frac{10text{ Wb}-0}{0.1text{ s}-0text{ s}}
end{align*}
$$

$$
boxed{varepsilon=-100text{ V}}
$$

$bold{b)}$

If we chose the beginning and the endpoint of segment:

At $t_i=0.1text{ s}$ the magnetic flux is $Phi_i=10text{ Wb}$.

At the $t_f=0.2text{ s}$ the magnetic flux is $Phi_f=10text{ Wb}$.
And the induced emf will be:

$$
begin{align*}
varepsilon&=-frac{Phi_f-Phi_i}{t_f-t_i}\
varepsilon&=-frac{10text{ Wb}-10text{ Wb}}{0.2text{ s}-0.1text{ s}}
end{align*}
$$

$$
boxed{varepsilon=0}
$$

We can also conclude this because there is no change in flux between two points at the same segment.

Step 2
2 of 3
$bold{c)}$

If we chose the beginning and the endpoint of slope:

At $t_i=0.2text{ s}$ the magnetic flux is $Phi_i=10text{ Wb}$.

At the $t_f=0.6text{ s}$ the magnetic flux is $Phi_f=-5text{ Wb}$.
And the induced emf will be:

$$
begin{align*}
varepsilon&=-frac{Phi_f-Phi_i}{t_f-t_i}\
varepsilon&=-frac{-5text{ Wb}-10text{ Wb}}{0.6text{ s}-0.2text{ s}}
end{align*}
$$

$$
boxed{varepsilon=37.5text{ V}}
$$

Result
3 of 3
a) $varepsilon=-100text{ V}$

b) $varepsilon=0$

c) $varepsilon=37.5text{ V}$

Exercise 57
Step 1
1 of 2
$bold{a)}$
The magnitude of induced emf is the same for both points because it lays at the same slope segment and the change of the magnetic flux is linear.

$bold{b)}$

The magnitude of the magnetic flux at $t=0.25text{ s}$ and $t=0.55text{ s}$ is:

$$
begin{align*}
varepsilon&=-frac{DeltaPhi}{Delta{t}}\
varepsilon&=-frac{Phi_f-Phi_i}{t_f-t_i}\
varepsilon&=-frac{-5text{ Wb}-10text{ Wb}}{0.6text{ s}-0.2text{ s}}
end{align*}
$$

$$
boxed{varepsilon=37.5text{ V}}
$$

Result
2 of 2
a) Induced emf is the same.

b) $varepsilon=37.5text{ V}$

Exercise 58
Step 1
1 of 2
We have given:

$$
begin{align*}
B&=0.48text{ T}\
N&=1\
A&=7.4cdot{10^{-2}}text{ m}^2\
R&=110text{ $Omega$}\
I&=0.32text{ A}
end{align*}
$$

And we have to find the rate of field change:

$$
begin{align}
varepsilon&=-frac{DeltaPhi}{Delta{t}}
end{align}
$$

Where the change of the magnetic flux is given with:

$$
begin{align*}
DeltaPhi&=Ncdot{A}cdotDelta{B}
end{align*}
$$

Let’s substitute in first equation and express the ratio of field change:

$$
begin{align*}
varepsilon&=-Ncdot{A}cdotfrac{Delta{B}}{Delta{t}}\
frac{Delta{B}}{Delta{t}}&=-frac{varepsilon}{Ncdot{A}}\
frac{Delta{B}}{Delta{t}}&=-frac{Icdot{R}}{Ncdot{A}}\
frac{Delta{B}}{Delta{t}}&=-frac{0.32text{ A}cdot{110text{ $Omega$}}}{1cdot{7.4cdot{10^{-2}}text{ m}^2}}
end{align*}
$$

$$
boxed{frac{Delta{B}}{Delta{t}}=-475.7 frac{text{T}}{text{s}}}
$$

Result
2 of 2
$$
frac{Delta{B}}{Delta{t}}=-475.7 frac{text{T}}{text{s}}
$$
Exercise 59
Step 1
1 of 2
We have given:

$$
begin{align*}
l&=0.76text{ m}\
v&=2 frac{text{m}}{text{s}}\
varepsilon&=0.45text{ V}
end{align*}
$$

And we need to compute the magnitude of the magnetic field. The motional emf is given by the equation:

$$
begin{align*}
varepsilon&=vcdot{B}cdot{l}
end{align*}
$$

Let’s express the magnitude of the magnetic field and substitute:

$$
begin{align*}
B&=frac{varepsilon}{vcdot{l}}\
B&=frac{0.45text{ V}}{2 frac{text{m}}{text{s}}cdot{0.76text{ m}}}
end{align*}
$$

$$
boxed{B=0.296text{ T}}
$$

Result
2 of 2
$$
B=0.296text{ T}
$$
Exercise 60
Step 1
1 of 2
We have given:

$$
begin{align*}
l&=39.9text{ m}\
v&=850 frac{text{km}}{text{s}}\
B&=5cdot{10^{-6}}text{ T}
end{align*}
$$

And we need to compute the induced emf between the tips of airplane wings. The motional emf is given by the equation:

$$
begin{align*}
varepsilon&=vcdot{B}cdot{l}
end{align*}
$$

First we have to convert the speed units:

$$
begin{align*}
v&=850 frac{text{km}}{text{h}}=850 frac{text{km}}{text{h}}cdotfrac{1000 frac{text{m}}{text{km}}}{3600 frac{text{s}}{text{h}}}=236.11 frac{text{m}}{text{s}}
end{align*}
$$

Let’s substitute and compute the emf:

$$
begin{align*}
varepsilon&=236.11 frac{text{m}}{text{s}}cdot{5cdot{10^{-6}}text{ T}}cdot{39.9text{ m}}
end{align*}
$$

$$
boxed{varepsilon=0.047text{ V}}
$$

Result
2 of 2
$$
varepsilon=0.047text{ V}
$$
Exercise 61
Step 1
1 of 2
When the switch is closed the current of the battery starts to flow through the rod and the road starts to accelerate and to move toward the left. When the rod starts to move inside the magnetic field there will be induced the motional emf and the induced current will try to make a balance with the current from the battery. When the two currencies are in balance, there will not be the current inside the rod, but the rod will continue movement because there is no friction.
Result
2 of 2
The rod will accelerate and then continue to move with constant velocity.
Exercise 62
Step 1
1 of 2
The two wires are not connected so there is no external current (force) to balance the induced current inside the rod. So in case that the rod is friction less there is no needed force to keep rod in move.
Result
2 of 2
There is no need for external force to keep the rod in move.
Exercise 63
Step 1
1 of 2
The maximum emf of the generator was $varepsilon_{max}=100text{ V}$. The maximum emf of the generator is given by the equation:

$$
begin{align*}
varepsilon_{max}&=Ncdot{B}cdot{A}cdotomega
end{align*}
$$

so if doubled the magnitude of the magnetic field and tripled the angular speed, the new maximum of emf will be:

$$
begin{align*}
varepsilon_{max2}&=Ncdot(2cdot{B})cdot{A}cdot(3cdot{omega})\
varepsilon_{max2}&=6cdot{N}cdot{B}cdot{A}cdotomega\
varepsilon_{max2}&=6cdot{varepsilon_{max}}
end{align*}
$$

$$
boxed{varepsilon_{max2}=600text{ V}}
$$

Result
2 of 2
$$
varepsilon_{max2}=600text{ V}
$$
Exercise 64
Step 1
1 of 2
The maximum emf of the generator was $varepsilon_{max}=100text{ V}$. The maximum emf of the generator is given by the equation:

$$
begin{align*}
varepsilon_{max}&=Ncdot{B}cdot{A}cdotomega
end{align*}
$$

so if we halved the magnitude of the magnetic field and tripled the area of the loop, the new maximum of emf will be:

$$
begin{align*}
varepsilon_{max2}&=Ncdot(frac{1}{2}cdot{B})cdot(3cdot{A})cdotomega\
varepsilon_{max2}&=frac{3}{2}cdot{N}cdot{B}cdot{A}cdotomega\
varepsilon_{max2}&=frac{3}{2}cdot{varepsilon_{max}}
end{align*}
$$

$$
boxed{varepsilon_{max2}=150text{ V}}
$$

Result
2 of 2
$$
varepsilon_{max2}=150text{ V}
$$
Exercise 65
Step 1
1 of 2
The maximum emf of the generator is given by the equation:

$$
begin{align}
varepsilon_{max1}&=Ncdot{B}cdot{A}cdotomega_1
end{align}
$$

So to induce the emf of $varepsilon_{max2}=55text{ V}$ the speed of rotor must to be:

$$
begin{align}
omega_2&=frac{varepsilon_{max2}}{Ncdot{B}cdot{A}}
end{align}
$$

Let’s express the numerator from the first equation and substitute in to a second:

$$
begin{align*}
Ncdot{B}cdot{A}&=frac{varepsilon_{max1}}{omega_1}\
omega_2&=frac{varepsilon_{max2}}{Ncdot{B}cdot{A}}\
omega_2&=frac{varepsilon_{max2}}{frac{varepsilon_{max1}}{omega_1}}\
omega_2&=omega_1cdotfrac{varepsilon_{max2}}{varepsilon_{max1}}\
omega_2&=22 frac{text{rad}}{text{s}}cdotfrac{55text{ V}}{45text{ V}}
end{align*}
$$

$$
boxed{omega_2=26.9 frac{text{rad}}{text{s}}}
$$

Result
2 of 2
$$
omega_2=26.9 frac{text{rad}}{text{s}}
$$
Exercise 66
Step 1
1 of 2
We have given:

$$
begin{align*}
omega&=190 frac{text{rad}}{text{s}}\
a&=25text{ cm}=0.25text{ m}\
b&=35text{ cm}=0.35text{ m}\
N&=120\
varepsilon_{max}&=65text{ V}
end{align*}
$$

The maximum emf of the generator is given by the equation:

$$
begin{align}
varepsilon_{max}&=Ncdot{B}cdot{A}cdotomega
end{align}
$$

And the area of the loop is:

$$
begin{align}
A&=acdot{b}
end{align}
$$

So, let’s express the magnitude of the magnetic field from the first equation and substitute:

$$
begin{align*}
B&=frac{varepsilon_{max}}{Ncdot{A}cdotomega}\
B&=frac{varepsilon_{max}}{Ncdot{acdot{b}}cdotomega}\
B&=frac{65text{ V}}{120cdot{0.25text{ m}cdot{0.35text{ m}}}cdot{190 frac{text{rad}}{text{s}}}}
end{align*}
$$

$$
boxed{B=0.032text{ T}}
$$

Result
2 of 2
$$
B=0.032text{ T}
$$
Exercise 67
Step 1
1 of 2
We have given:

$$
begin{align*}
l&=1.6text{ m}\
R&=3.2text{ cm}=0.032text{ m}\
B&=0.075text{ T}\
omega&=85text{ rpm}
end{align*}
$$

And we have to compute the maximal induced emf, that is given by the equation:

$$
begin{align}
varepsilon_{max}&=Ncdot{A}cdot{B}cdotomega
end{align}
$$

We do not have given the number of loops, but we have the length of used wire and the radius of a single loop, so we can compute it.

$$
begin{align*}
l&=Ncdot{C}=Ncdot{2}cdot{R}cdotpi\
N&=frac{l}{2cdot{R}cdotpi}\
N&=frac{1.6text{ m}}{2cdot{0.032text{ m}}cdotpi}\
N&=8
end{align*}
$$

Now we have to convert the units of a angular velocity:

$$
begin{align*}
omega&=85text{ rpm}=85text{ rpm}cdotfrac{2 pi frac{text{ rad}}{text{ rev}}}{60 frac{text{min}}{text{s}}}=8.9 frac{text{rad}}{text{s}}
end{align*}
$$

Let’s now substitute in to a first equation and compute:

$$
begin{align*}
varepsilon_{max}&=Ncdot{A}cdot{B}cdotomega\
varepsilon_{max}&=Ncdot(R^2cdotpi)cdot{B}cdotomega\
varepsilon_{max}&=8cdot(0.032text{ m})^2cdotpicdot{0.075text{ T}}cdot{8.9 frac{text{rad}}{text{s}}}
end{align*}
$$

$$
boxed{varepsilon_{max}=1.717cdot{10^{-2}}text{ V}}
$$

Result
2 of 2
$$
varepsilon_{max}=1.717cdot{10^{-2}}text{ V}
$$
Exercise 68
Step 1
1 of 6
We have given:hfill{color{white}x}
begin{align*}
d&=22text{ cm}=0.22text{ m}\
N&=155\
B_h&=3.8cdot{10^{-5}}text{ T}\
B_v&=2.85cdot{10^{-5}}text{ T}\
omega&=1250text{ rpm}
end{align*}
Step 2
2 of 6
$bold{a)}$

As the coil loops rotate about the vertical axis, only the horizontal component of the Eart magnetic field will induce the emf in coil.

$$
boxed{text{Only the horizontal component of the magnetic field is important.}}
$$

Step 3
3 of 6
$bold{b)}$

We have to compute the maximal induced emf, that is given by the equation:

$$
begin{align}
varepsilon_{max}&=Ncdot{A}cdot{B_h}cdotomega
end{align}
$$

Step 4
4 of 6
Let’s convert the units of a angular velocity:hfill{color{white}x}
begin{align*}
omega&=1250text{ rpm}=1250text{ rpm}cdotfrac{2 pi frac{text{ rad}}{text{ rev}}}{60 frac{text{min}}{text{s}}}=130.9 frac{text{rad}}{text{s}}
end{align*}
Step 5
5 of 6
Let’s now substitute in to a first equation and compute:hfill{color{white}x}
begin{align*}
varepsilon_{max}&=Ncdot{A}cdot{B_h}cdotomega\
varepsilon_{max}&=Ncdotleft(frac{d}{2}right)^2cdotpicdot{B}cdotomega\
varepsilon_{max}&=155cdotleft(frac{0.22text{ m}}{2}right)^2cdotpicdot{3.8cdot{10^{-5}}text{ T}}cdot{130.9 frac{text{rad}}{text{s}}}
end{align*}
$$boxed{varepsilon_{max}=2.93cdot{10^{-2}}text{ V}}$$
Result
6 of 6
a) Only horizontal component is important.

b) $varepsilon_{max}=2.93cdot{10^{-2}}text{ V}$

Exercise 69
Step 1
1 of 2
In case of symmetrical current wave form the average value is zero. The values in a positive half period corresponds to the values at the negative half period. So the average value in that case will be zero.

Regarding the rms value, the values at the samples is first squared so the value will be always positive. Then we calculate the average value of squares and compute the square root, so the value is always positive.

Result
2 of 2
The rms value is always positive, because the values at a samples are squared. The average value can be zero, in case of symmetrical wave form.
Exercise 70
Step 1
1 of 2
Instead of $P=Icdot{V}$ in case of DC current, in a AC current we have to use RMS values of the current and voltage to get the average power $P_{avg}=I_{rms}cdot{V_{rms}}$.
Result
2 of 2
$$
P_{avg}=I_{rms}cdot{V_{rms}}
$$
Exercise 71
Step 1
1 of 3
The transformer equation is given as:

$$
begin{align*}
frac{V_P}{V_S}&=frac{N_P}{N_S}\
V_S&=V_Pcdotfrac{N_S}{N_P}
end{align*}
$$

For the transformer $A$ we have given:

$$
begin{align*}
V_P&=100text{ V}\
N_S&=100\
N_P&=20
end{align*}
$$

Let’s compute the voltage at the secondary side:

$$
begin{align*}
V_S&=100text{ V}cdotfrac{100}{20}\
V_S&=500text{ V}
end{align*}
$$

For the transformer $B$ we have given:

$$
begin{align*}
V_P&=100text{ V}\
N_S&=20\
N_P&=100
end{align*}
$$

Let’s compute the voltage at the secondary side:

$$
begin{align*}
V_S&=100text{ V}cdotfrac{20}{100}\
V_S&=20text{ V}
end{align*}
$$

For the transformer $C$ we have given:

$$
begin{align*}
V_P&=20text{ V}\
N_S&=50\
N_P&=50
end{align*}
$$

Let’s compute the voltage at the secondary side:

$$
begin{align*}
V_S&=20text{ V}cdotfrac{50}{50}\
V_S&=20text{ V}
end{align*}
$$

Step 2
2 of 3
For the transformer $D$ we have given:

$$
begin{align*}
V_P&=50text{ V}\
N_S&=80\
N_P&=400
end{align*}
$$

Let’s compute the voltage at the secondary side:

$$
begin{align*}
V_S&=50text{ V}cdotfrac{80}{400}\
V_S&=100text{ V}
end{align*}
$$

Let’s compare the values of the transformers:

$$
boxed{A>D>B=C}
$$

Result
3 of 3
$$
A>D>B=C
$$
Exercise 72
Step 1
1 of 2
$bold{a)}$

The voltage equation of the transformer is given by:

$$
begin{align*}
frac{V_P}{V_S}&=frac{N_P}{N_S}\
V_S&=V_Pcdotfrac{N_S}{N_P}
end{align*}
$$

So, if the number of loop in secondary coil is decreased, the voltage in secondary coil will also decrease.

$$
boxed{text{The voltage in secondary circuit also decrease.}}
$$

$bold{b)}$

The current equation of the transformer is given by:

$$
begin{align*}
frac{I_P}{I_S}&=frac{N_S}{N_P}\
I_S&=I_Pcdotfrac{N_P}{N_S}
end{align*}
$$

So, if the number of loop in secondary coil is decreased, the current in secondary circuit will increase.

$$
boxed{text{The current in secondary circuit increase.}}
$$

Result
2 of 2
a) The voltage in secondary circuit also decrease.

b) The current in secondary circuit increase.

Exercise 73
Step 1
1 of 2
The voltage equation of the transformer is given by:

$$
begin{align*}
frac{V_P}{V_S}&=frac{N_P}{N_S}\
V_S&=V_Pcdotfrac{N_S}{N_P}
end{align*}
$$

So for the second transformer, the secondary voltage will be:

$$
begin{align*}
V_{S2}&=V_{P2}cdotfrac{N_{S2}}{N_{P2}}\
V_{S2}&=2cdot{V_P}cdotfrac{2cdot{N_S}}{2cdot{N_P}}\
V_{S2}&=2cdot{V_P}cdotfrac{N_S}{N_P}\
V_{S2}&=2cdot{V_S}
end{align*}
$$

$$
boxed{text{The secondary voltage of the transformer 2 will be $2cdot{V_S}$.}}
$$

Result
2 of 2
$$
V_{S2}=2cdot{V_S}
$$
Exercise 74
Step 1
1 of 2
The current equation of the transformer is given by:

$$
begin{align*}
frac{I_P}{I_S}&=frac{N_S}{N_P}\
I_S&=I_Pcdotfrac{N_P}{N_S}
end{align*}
$$

So for the second transformer, the current in secondary circuit will be:

$$
begin{align*}
I_{S2}&=I_{P2}cdotfrac{N_{P2}}{N_{S2}}\
I_{S2}&=3cdot{I_P}cdotfrac{2cdot{N_P}}{N_S}\
I_{S2}&=6cdot{I_S}
end{align*}
$$

$$
boxed{text{The current in secondary circuit of the transformer 2 will be $I_{S2}=6cdot{I_S}$.}}
$$

Result
2 of 2
$$
I_{S2}=6cdot{I_S}
$$
Exercise 75
Step 1
1 of 2
The relation between the rms value of voltage and it’s maximum value is given by:

$$
begin{align*}
V_{rms}&=frac{V_{max}}{sqrt{2}}\
V_{rms}&=frac{55text{ V}}{sqrt{2}}
end{align*}
$$

$$
boxed{V_{rms}=38.9text{ V}}
$$

Result
2 of 2
$$
V_{rms}=38.9text{ V}
$$
Exercise 76
Step 1
1 of 2
The relation between the maximum value of voltage and it’s rmsvalue is given by:

$$
begin{align*}
V_{max}&=sqrt{2}cdot{V_{rms}}\
V_{max}&=sqrt{2}cdot{240text{ V}}
end{align*}
$$

$$
boxed{V_{max}=340text{ V}}
$$

Result
2 of 2
$$
V_{rms}=340text{ V}
$$
Exercise 77
Step 1
1 of 2
We have given:

$$
begin{align*}
V_{rms}&=120text{ V}\
I_{max}&=2.1text{ A}
end{align*}
$$

The equation for the resistance in an AC circuit is given as:

$$
begin{align*}
R&=frac{V_{max}}{I_{max}}=frac{V_{rms}}{I_{rms}}
end{align*}
$$

So to compute the resistance of the resistor in a circuit we need to compute the maximum value of voltage or rms value of current. Let’s find the maximum value of voltage.

$$
begin{align*}
V_{max}&=sqrt{2}cdot{V_{rms}}\
R&=frac{V_{max}}{I_{max}}\
R&=frac{sqrt{2}cdot{V_{rms}}}{I_{max}}\
R&=frac{sqrt{2}cdot{120text{ V}}}{2.1text{ A}}
end{align*}
$$

$$
boxed{R=80.8text{ $Omega$}}
$$

Result
2 of 2
$$
R=80.8text{ $Omega$}
$$
Exercise 78
Step 1
1 of 2
We have given:

$$
begin{align*}
R&=150text{ $Omega$}\
I_{rms}&=0.85text{ A}
end{align*}
$$

$bold{a)}$

The average power consumed by the circuit is defined by the equation:

$$
begin{align*}
P_{avg}&=(I_{rms})^2cdot{R}\
P_{avg}&=(0.85text{ A})^2cdot{150text{ $Omega$}}
end{align*}
$$

$$
boxed{P_{avg}=108.4text{ W}}
$$

$bold{b)}$

To compute the maximum power consumption we have adopt equation:

$$
begin{align*}
P_{max}&=(I_{max})^2cdot{R}\
P_{max}&=(sqrt{2}cdot{I_{rms}})^2cdot{R}\
P_{max}&=2cdot(I_{rms})^2cdot{R}\
P_{max}&=2cdot(0.85text{ A})^2cdot{150text{ $Omega$}}
end{align*}
$$

$$
boxed{P_{max}=216.8text{ W}}
$$

Result
2 of 2
a) $P_{avg}=108.4text{ W}$

b) $P_{max}=216.8text{ W}$

Exercise 79
Step 1
1 of 2
We have given:

$$
begin{align*}
R&=3.33text{ k$Omega$}\
V_{max}&=141text{ V}
end{align*}
$$

$bold{a)}$

The average power consumed by the circuit is defined by the equation:

$$
begin{align*}
P_{avg}&=frac{(V_{rms})^2}{R}\
P_{avg}&=frac{left(frac{V_{max}}{sqrt{2}}right)^2}{R}\
P_{avg}&=frac{left(V_{max}right)^2}{2cdot{R}}\
P_{avg}&=frac{left(141text{ V}right)^2}{2cdot{3330text{ $Omega$}}}
end{align*}
$$

$$
boxed{P_{avg}=3text{ W}}
$$

$bold{b)}$

To compute the maximum power consumption we have adopt equation:

$$
begin{align*}
P_{max}&=frac{(V_{max})^2}{R}\
P_{max}&=frac{(141text{ V})^2}{3330text{ $Omega$}}
end{align*}
$$

$$
boxed{P_{max}=6text{ W}}
$$

Result
2 of 2
a) $P_{max}=3text{ W}$

b) $P_{max}=6text{ W}$

Exercise 80
Step 1
1 of 2
We have given:

$$
begin{align*}
V_P&=110text{ V}\
V_S&=3text{ V}
end{align*}
$$

The primary side of the transformer is connected to a household voltage, and the voltage has to be reduced to a $3text{ V}$. The transforming ratio can be computed from the transformer equation:

$$
begin{align*}
frac{N_P}{N_S}&=frac{V_P}{V_S}\
frac{N_P}{N_S}&=frac{110text{ V}}{3text{ V}}
end{align*}
$$

$$
boxed{frac{N_P}{N_S}=36.67}
$$

Result
2 of 2
$$
frac{N_P}{N_S}=36.67
$$
Exercise 81
Step 1
1 of 2
We have given:

$$
begin{align*}
V_P&=120text{ V}\
V_S&=9text{ V}\
N_P&=147
end{align*}
$$

$bold{a)}$

The voltage equation of the transformer is given by:

$$
begin{align*}
frac{N_P}{N_S}&=frac{V_P}{V_S}
end{align*}
$$

$$
boxed{text{The number of the loops at secondary side have to be less then 147.}}
$$

$bold{b)}$

Let’s substitute the given:

$$
begin{align*}
frac{N_P}{N_S}&=frac{V_P}{V_S}\
N_S&=frac{9text{ V}}{120text{ V}}cdot{147}
end{align*}
$$

$$
boxed{N_S=11}
$$

Result
2 of 2
a) The number of the loops at secondary side have to be less then 147.

b) $N_S=11$

Exercise 82
Step 1
1 of 2
We have given:

$$
begin{align*}
frac{N_S}{N_P}&=frac{1}{18}\
V_P&=110text{ V}
end{align*}
$$

So, we have to compute the voltage at secondary side of the transformer.

$$
begin{align*}
frac{N_P}{N_S}&=frac{V_P}{V_S}
end{align*}
$$

Let’s express the voltage at secondary side:

$$
begin{align*}
frac{N_P}{N_S}&=frac{V_P}{V_S}\
V_S&=frac{N_S}{N_P}cdot{V_P}\
V_S&=frac{1}{18}cdot{110text{ V}}
end{align*}
$$

$$
boxed{V_S=6.11text{ V}}
$$

Result
2 of 2
$$
V_S=6.11text{ V}
$$
Exercise 83
Step 1
1 of 2
We have given:

$$
begin{align*}
V_P&=120text{ V}\
V_S&=11000text{ V}
end{align*}
$$

And we have to compute the ratio of loops. The equation of the transformer is given as:

$$
begin{align*}
frac{N_S}{N_P}&=frac{V_S}{V_P}
end{align*}
$$

Let’s express substitute:

$$
begin{align*}
frac{N_S}{N_P}&=frac{11000text{ V}}{120text{ V}}
end{align*}
$$

$$
boxed{frac{N_S}{N_P}=91.7}
$$

Result
2 of 2
$$
frac{N_S}{N_P}=91.7
$$
Exercise 84
Step 1
1 of 2
We have given:

$$
begin{align*}
P_{avg}&=75text{ W}\
V_{rms}&=120text{ V}
end{align*}
$$

$bold{a)}$

The average power of the resistive element in an AC circuit is given by the equation:

$$
begin{align*}
P_{avg}&=frac{(V_{rms})^2}{R}
end{align*}
$$

Let’s express the resistance from this equation and substitute:

$$
begin{align*}
R&=frac{(V_{rms})^2}{P_{avg}}\
R&=frac{(120text{ V})^2}{75text{ W}}
end{align*}
$$

$$
boxed{R=192text{ $Omega$}}
$$

$bold{b)}$

We have the voltage on the resistor and it’s resistance so we can compute the current through it as:

$$
begin{align*}
I_{max}&=sqrt{2}cdot{I_{rms}}\
I_{max}&=sqrt{2}cdotfrac{V_{rms}}{R}\
I_{max}&=sqrt{2}cdotfrac{120text{ V}}{192text{ $Omega$}}
end{align*}
$$

$$
boxed{I_{max}=0.88text{ A}}
$$

$bold{c)}$

The maximum power at resistor is given by the equation:

$$
begin{align*}
P_{max}&=I_{max}cdot{V_{max}}\
P_{max}&=I_{max}cdot{sqrt{2}cdot{V_{rms}}}\
P_{max}&=0.88text{ A}cdot{sqrt{2}cdot{120text{ V}}}
end{align*}
$$

$$
boxed{P_{max}=149.3text{ W}}
$$

Result
2 of 2
a) $R=192text{ $Omega$}$

b) $I_{max}=0.88text{ A}$

c) $P_{max}=149.3text{ W}$

Exercise 85
Step 1
1 of 2
The magnetic field of the Earth is polarized and the magnetic field lines go from the north pole to the south pole. In that situation, the horizontal component of the magnetic field is at a very low rate, and the vertical component is at maximum.

So if we hold the loop in that way that the normal is vertical the magnetic flux will be maximum. On the other way, if the normal to a loop is horizontal, the magnetic flux will be almost zero.

$$
boxed{text{If the normal to the loop is horizontal, the flux will be lower.}}
$$

Result
2 of 2
If the normal to the loop is horizontal, the flux will be lower.
Exercise 86
Step 1
1 of 2
The magnet is moving down with the north pole downward, and during the transition, there will be an increase in magnetic flux through the ring, which will produce the induced current through the ring. The induced current tries to oppose the change in magnetic flux and this is possible just if the current direction is counterclockwise.
Result
2 of 2
The current direction is counterclockwise.
Exercise 87
Step 1
1 of 2
We have given:

$$
begin{align*}
l&=0.45text{ m}\
R&=12.5text{ $Omega$}\
B&=0.75text{ T}\
I&=0.125text{ A}
end{align*}
$$

The induced moving emf is defined by the equation:

$$
begin{align*}
varepsilon&=Bcdot{l}cdot{v}
end{align*}
$$

And the induced current will be the current through the resistor, so let’s substitute and express the speed:

$$
begin{align*}
Icdot{R}&=Bcdot{l}cdot{v}\
v&=frac{Icdot{R}}{Bcdot{l}}\
v&=frac{0.125text{ A}cdot{12.5text{ $Omega$}}}{0.75text{ T}cdot{0.45text{ m}}}
end{align*}
$$

$$
boxed{v=4.63 frac{text{m}}{text{s}}}
$$

Result
2 of 2
$$
v=4.63 frac{text{m}}{text{s}}
$$
Exercise 88
Step 1
1 of 2
$bold{a)}$

If the current is constant there is no change in magnetic flux, so there is no induced emf.

$$
boxed{text{The current will be zero.}}
$$

$bold{b)}$
The magnetic field produced by the current in the wire will have the direction out from the paper. There will be also an induced magnetic field that tries to oppose the magnetic field of the wire current. The direction of the induced magnetic field will be in the paper. This magnetic field will produce the current in the clockwise direction.

$$
boxed{text{Induced current direction will be clockwise.}}
$$

Result
2 of 2
a) The induced current will be zero.

b) Induced current direction will be clockwise.

Exercise 89
Step 1
1 of 2
$bold{a)}$

The direction of the magnetic field lines that are produced by the magnet will go from the magnet’s north magnetic pole to the south magnetic poles. So when the loop falling down, the magnetic flux will increase. As the magnetic field direction will be toward the rightward, the induced magnetic field will oppose it, so the direction of the induced magnetic field will be leftward. This is possible if:

$$
boxed{text{The direction of the induced current is clockwise.}}
$$

$bold{b)}$

When the loop falling down, the magnetic flux will decrease. As the magnetic field direction will be toward the rightward, the induced magnetic field will oppose it, in order to increase the magnetic flux, so the direction of the induced magnetic field will be rightward. This is possible if:

$$
boxed{text{The direction of the induced current is counterclockwise.}}
$$

Result
2 of 2
a) The direction of the induced current is clockwise.

b) The direction of the induced current is counterclockwise.

Exercise 90
Step 1
1 of 2
We have given:

$$
begin{align*}
v&=8cdot{10^3} frac{text{m}}{text{s}}\
B&=2cdot{10^{-10}}text{ T}\
l&=5text{ m}
end{align*}
$$

The potential difference between its ends represent the motional emf that is given by the equation:

$$
begin{align*}
varepsilon&=vcdot{B}cdot{l}
end{align*}
$$

As we have the all given, let’s substitute and compute:

$$
begin{align*}
varepsilon&=8cdot{10^3} frac{text{m}}{text{s}}cdot{2cdot{10^{-10}}text{ T}}cdot{5text{ m}}
end{align*}
$$

$$
boxed{varepsilon=8cdot{10^{-6}}text{ V}}
$$

Result
2 of 2
$$
varepsilon=8cdot{10^{-6}}text{ V}
$$
Exercise 91
Step 1
1 of 2
We have given:

$$
begin{align*}
a&=5.8text{ cm}=0.058text{ m}\
b&=8.2text{ cm}=0.082text{ m}\
B&=1.3text{ T}\
N&=1\
Delta{T}&=21text{ ms}=0.021text{ s}
end{align*}
$$

The average induced emf is defined by the equation:

$$
begin{align}
varepsilon&=-Ncdotfrac{Delta{Phi}}{Delta{t}}
end{align}
$$

As the loop is rectangular the area of single loop is:

$$
begin{align*}
A&=acdot{b}
end{align*}
$$

We have that the minimal flux during the loop rotation is zero, but we do not have the maximum magnetic flux and we need to compute it. The maximal magnetic flux is achieved when the angle between the normal to loop and and magnetic field is parallel, so the angle have to be $0text{textdegree}$:

$$
begin{align*}
Phi_{f}&=Bcdot{A}cdotcostheta\
Phi_{f}&=Bcdot{A}cdotcos{0text{textdegree}}\
Phi_{f}&=Bcdot{A}
end{align*}
$$

Let’s substitute in the first equation:

$$
begin{align*}
varepsilon&=-Ncdotfrac{Phi_f-Phi_i}{Delta{t}}\
varepsilon&=-Ncdotfrac{Bcdot{A}-0}{Delta{t}}\
varepsilon&=-Ncdotfrac{Bcdot{acdot{b}}}{Delta{t}}\
varepsilon&=-1cdotfrac{Bcdot{acdot{b}}}{Delta{t}}\
varepsilon&=-1cdotfrac{1.3text{ T}cdot{0.058text{ m}cdot{0.082text{ m}}}}{Delta{0.021text{ s}}}
end{align*}
$$

$$
boxed{varepsilon=-0.29text{ V}}
$$

Result
2 of 2
$$
varepsilon=-0.29text{ V}
$$
Exercise 92
Step 1
1 of 2
$bold{a)}$

The holes in the disk will interrupt the eddy’s current so:

$$
boxed{text{Effect of eddy’s current is greater in solid disk}}
$$

$bold{b)}$

The solid disk experiences a greater force because
eddy currents in it flow freely and are not interrupted by
the slots.

$$
boxed{text{The best explanation is $B$.}}
$$

Result
2 of 2
a) Effect of eddy’s current is greater in solid disk.

b) The best explanation is $B$.

Exercise 93
Step 1
1 of 2
We have given:

$$
begin{align*}
N&=1\
frac{Delta{B}}{Delta{t}}&=3cdot{10^4} frac{text{T}}{text{s}}\
A&=1.13cdot{10^{-2}}text{ m}^2
end{align*}
$$

And we have to compute the induced emf, that is given by the equation:

$$
begin{align*}
varepsilon&=-Ncdotfrac{DeltaPhi}{Delta{t}}\
varepsilon&=Ncdotfrac{AcdotDelta{B}}{Delta{t}}\
varepsilon&=Ncdot{A}cdotfrac{Delta{B}}{Delta{t}}
end{align*}
$$

Let’s substitute and compute:

$$
begin{align*}
varepsilon&=-1cdot{1.13cdot{10^{-2}}text{ m}^2}cdot{3}cdot{10^4} frac{text{T}}{text{s}}
end{align*}
$$

$$
boxed{varepsilon=339text{ V}}
$$

Result
2 of 2
$$
varepsilon=339text{ V}
$$
Exercise 95
Step 1
1 of 2
Electromagnetic induction is originally discovered in the 19th century by the scientist Michael Faraday. In his experiment, he wrapped two parts of wire around the torus of the ferromagnetic material. Through the one wire, he connects the electrical current and connects the galvanometer on the other part of the wire, and the galvanometer detects the current.

These principles are used in many everyday applications for example the electrical generator, transformer, inductional welding, inductive motor, inductional heaters, wireless chargers, and this is not possible without electromagnetic induction.

The change in magnetic flux in electromagnetic induction is possible to achieve in three ways. By changing the magnitude of the magnetic field (or moving the loop inside the constant magnetic field), changing the area of the loop by deforming it, or by the changing angle between the loop surface and the magnetic field lines.

Result
2 of 2
See inside.
Exercise 96
Step 1
1 of 2
The direction of the induced magnetic field is defined by the Lenz’s law and have to be always at that direction to oppose the change in magnetic flux. So the direction of induced magnetic field will be upward. And the direction of induced current is defined by the right hand rule.

$$
boxed{text{The induced current direction is counterclockwise.}}
$$

Result
2 of 2
The induced current direction is counterclockwise.
Exercise 97
Step 1
1 of 2
We have given:

$$
begin{align*}
B_i&=1.2cdot{10^{-5}}text{ T}\
B_f&=2.6cdot{10^{-5}}text{ T}\
Delta{t}&=0.38text{ s}\
R&=0.67text{ m}\
N&=4
end{align*}
$$

and we have to find the induced emf in the loop. The induced emf is defined by the equation:

$$
begin{align*}
varepsilon&=-Ncdotfrac{DeltaPhi}{Delta{t}}=Ncdot{A}cdotfrac{Delta{B}}{Delta{t}}\
varepsilon&=Ncdot{A}cdotfrac{B_f-B_i}{Delta{t}}\
varepsilon&=Ncdot{R^2cdotpi}cdotfrac{B_f-B_i}{Delta{t}}\
varepsilon&=4cdot{(0.67text{ m})^2cdotpi}cdotfrac{2.6cdot{10^{-5}}text{ T}-1.2cdot{10^{-5}}text{ T}}{0.38text{ s}}\
varepsilon&=2.08cdot{10^{-4}}text{ V}
end{align*}
$$

$$
boxed{text{Correct answer is: $C$.}}
$$

Result
2 of 2
Correct answer is $C$.
Exercise 98
Step 1
1 of 2
We have given:

$$
begin{align*}
B_i&=1.2cdot{10^{-5}}text{ T}\
Delta{t}&=0.38text{ s}\
R&=0.67text{ m}\
N&=3\
varepsilon&=8.1cdot{10^{-4}}text{ V}
end{align*}
$$

and we have to find the magnitude of the magnetic field in the loop. The induced emf is defined by the equation:

$$
begin{align*}
varepsilon&=-Ncdotfrac{DeltaPhi}{Delta{t}}=Ncdot{A}cdotfrac{Delta{B}}{Delta{t}}
end{align*}
$$

Let’s express the magnitude of magnetic field and substitute:

$$
begin{align*}
Delta{B}&=frac{varepsiloncdotDelta{t}}{Ncdot{A}}\
B_f-B_i&=frac{varepsiloncdotDelta{t}}{Ncdot{A}}\
B_f&=frac{varepsiloncdotDelta{t}}{Ncdot{(R)^2cdotpi}}+B_i\
B_f&=frac{8.1cdot{10^{-4}}text{ V}cdot{0.38text{ s}}}{3cdot{(0.67text{ m})^2cdotpi}}+1.2cdot{10^{-5}}text{ T}\
B_f&=8.5cdot{10^{-5}}text{ T}
end{align*}
$$

$$
boxed{text{Correct answer is: $C$.}}
$$

Result
2 of 2
Correct answer is: $C$.
Exercise 99
Step 1
1 of 2
We have given:

$$
begin{align*}
B_i&=1.2cdot{10^{-5}}text{ T}\
B_f&=1.9cdot{10^{-5}}text{ T}\
a&=0.75text{ m}\
N&=4\
varepsilon&=1.4cdot{10^{-4}}text{ V}
end{align*}
$$

and we have to find the time needed to induce emf of $1.4cdot{10^{-4}}text{ V}$. The induced emf is defined by the equation:

$$
begin{align*}
varepsilon&=-Ncdotfrac{DeltaPhi}{Delta{t}}=Ncdot{A}cdotfrac{Delta{B}}{Delta{t}}
end{align*}
$$

Let’s express the change in time and substitute:

$$
begin{align*}
Delta{t}&=frac{{N}cdot{A}cdotDelta{B}}{varepsilon}\
Delta{t}&=frac{{N}cdot{a^2}cdot(B_f-B_i)}{varepsilon}\
Delta{t}&=frac{{4}cdot{(0.75text{ m})^2}cdot(1.9cdot{10^{-5}}text{ T}-1.2cdot{10^{-5}}text{ T})}{1.4cdot{10^{-4}}text{ V}}\
Delta{t}&=frac{{4}cdot{(0.75text{ m})^2}cdot(1.9cdot{10^{-5}}text{ T}-1.2cdot{10^{-5}}text{ T})}{1.4cdot{10^{-4}}text{ V}}\
Delta{t}&=0.11text{ s}
end{align*}
$$

$$
boxed{text{Correct answer is: $B$.}}
$$

Result
2 of 2
Correct answer is: $B$.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New