All Solutions
Page 81: Lesson Check
more negative. Since the speed is the magnitude of the velocity, the speed must be increasing as the velocity becomes more negative.
$$
begin{align*}
a_text{av} &= frac{Delta v}{Delta t} \
implies a_text{av} &propto frac{1}{Delta t}
end{align*}
$$
The relationship is inverse. If the time interval decreases, the acceleration must $textbf{increase}$.
begin{center}
begin{tabular}{|c|c|c|c|c|}
hline
& A & B & C & D \ hline
$v_text{f}~(mathrm{m/s})$ & 5 & 25 & 25 & -15 \ hline
$v_text{i}~(mathrm{m/s})$ & 15 & 30 & 20 & -10 \ hline
$Delta t~(mathrm{s})$ & 10 & 15 & 2 & 3 \ hline
end{tabular}
end{center}
$$
begin{align*}
a_text{av} &= frac{Delta v}{Delta t} \
a_text{av, A} &= frac{5~mathrm{m/} – left( 15~mathrm{m/s} right)}{10~mathrm{s}} = -1.0~mathrm{m/s^{2}} \
a_text{av, B} &= frac{25~mathrm{m/} – left( 30~mathrm{m/s} right)}{15~mathrm{s}} = -0.33~mathrm{m/s^{2}} \
a_text{av, C} &= frac{25~mathrm{m/} – left( 20~mathrm{m/s} right)}{10~mathrm{s}} = 2.5~mathrm{m/s^{2}} \
a_text{av, D} &= frac{-15~mathrm{m/} – left( -10~mathrm{m/s} right)}{3~mathrm{s}} = -1.7~mathrm{m/s^{2}} \
end{align*}
$$
The order must be
$$
boxed{ a_text{av, D} < a_text{av, A} < a_text{av, B} < a_text{av, C} }
$$
a_text{av, D} < a_text{av, A} < a_text{av, B} < a_text{av, C}
$$
For this part, we have $a_text{av} = +1.5~mathrm{m/s^{2}}$
$$
begin{align*}
v_text{f} &= v_text{i} + a_text{av}Delta t \
&= 18~mathrm{m/s} + left( +1.5~mathrm{m/s^{2}} right) left( Delta t = 7.0~mathrm{s} right) \
&= 28.5~mathrm{m/s} \
v_text{f} &= boxed{ 28~mathrm{m/s} }
end{align*}
$$
For this part, we have $a_text{av} = -1.5~mathrm{m/s^{2}}$
$$
begin{align*}
v_text{f} &= v_text{i} + a_text{av}Delta t \
&= 18~mathrm{m/s} + left( -1.5~mathrm{m/s^{2}} right) left( Delta t = 7.0~mathrm{s} right) \
v_text{f} &= boxed{ 7.5~mathrm{m/s} }
end{align*}
$$
item [a)] $+28~mathrm{m/s}$
item [b)] $+7.5~mathrm{m/s}$
end{enumerate}
For this part, $vtext{f} = 10~mathrm{m/s}$, $v_text{i} = 0~mathrm{m/s}$, $t_2 = 5~mathrm{s}$, and $t_{1} = 0~mathrm{s}$. The acceleration is
$$
begin{align*}
a_text{av} &= frac{Delta v}{Delta t} \
a_text{av, A}&= frac{v_text{f} – v_text{i}}{t_{2} – t_{2}} \
&= frac{10~mathrm{m/s} – left( 0~mathrm{m/s} right)}{5~mathrm{s} – 0~mathrm{s}} \
a_text{av, A} &= boxed{ 2~mathrm{m/s^{2}} }
end{align*}
$$
For this part, $vtext{f} = 10~mathrm{m/s}$, $v_text{i} = 10~mathrm{m/s}$, $t_2 = 15~mathrm{s}$, and $t_{1} = 5~mathrm{s}$. The acceleration is
$$
begin{align*}
a_text{av} &= frac{Delta v}{Delta t} \
a_text{av, B}&= frac{v_text{f} – v_text{i}}{t_{2} – t_{2}} \
&= frac{10~mathrm{m/s} – left( 10~mathrm{m/s} right)}{15~mathrm{s} – 5~mathrm{s}} \
a_text{av, B} &= boxed{ 0~mathrm{m/s^{2}} }
end{align*}
$$
For this part, $vtext{f} = 5~mathrm{m/s}$, $v_text{i} = 10~mathrm{m/s}$, $t_2 = 25~mathrm{s}$, and $t_{1} = 15~mathrm{s}$. The acceleration is
$$
begin{align*}
a_text{av} &= frac{Delta v}{Delta t} \
a_text{av, C}&= frac{v_text{f} – v_text{i}}{t_{2} – t_{2}} \
&= frac{5~mathrm{m/s} – left( 10~mathrm{m/s} right)}{25~mathrm{s} – 15~mathrm{s}} \
a_text{av, C} &= boxed{ -0.5~mathrm{m/s^{2}} }
end{align*}
$$
item [a)] $a_text{av, A} = 2~mathrm{m/s^{2}}$
item [b)] $a_text{av, B} = 0~mathrm{m/s^{2}}$
item [c)] $a_text{av, C} = -0.5~mathrm{m/s^{2}}$
end{enumerate}
$$
begin{align*}
v_text{f} &= v_text{i} + a_text{av} Delta t \
implies v_text{i} &= v_text{f} – a_text{av} Delta t \
&= +9.31~mathrm{m/s} – left( +6.24~mathrm{m/s^{2}} right) left( 0.300~mathrm{s} right) \
&= 7.435~mathrm{m/s}\
v_text{i} &= boxed{ 7.44~mathrm{m/s} }
end{align*}
$$
v_text{i} = 7.44~mathrm{m/s}
$$