All Solutions
Page 734: Lesson Check
$$
Q=CV
$$
Where $C$ is the capacitance of the capacitor.
$$
PE = frac{1}{2}Qleft(frac{Q}{C}right) = frac{Q^2}{2C}
$$
where $C$ is constant.
PE = dfrac{Q^2}{2C}
$$
The mechanical work done to separate two unlike charges is stored in the electric field as electric potential energy. This energy can be converted into kinetic energy when the charges are set free.
$$
begin{align*}
V &= frac{Q}{C}\
&= frac{56times10^{-6};mathrm{C}}{750times10^{-6};mathrm{F}}\
&= 0.075;mathrm{V}
end{align*}
$$
$$
begin{align*}
C &= frac{Q}{V}\
&= frac{32times10^{-6};mathrm{C}}{9.0;mathrm{V}}\
&= 3.6;mumathrm{F}
end{align*}
$$
$$
PE = frac{1}{2}(CV)V = frac{1}{2}CV^2
$$
Solving for $C$ and substituting the known values, we find
$$
begin{align*}
C &= frac{2PE}{V^2}\
&= frac{2(125;mathrm{J})}{(1050;mathrm{V})^2}\
&= 227;mumathrm{F}
end{align*}
$$
$$
begin{align*}
Q &= CV\
&= (890times10^{-6};mathrm{F})(330;mathrm{V})\
&= 0.294;mathrm{C}
end{align*}
$$
$textbf{(b)}$ The energy stored in the flash unit is
$$
begin{align*}
PE &= frac{1}{2}QV\
&= frac{1}{2}(0.294;mathrm{C})(330;mathrm{V})\
&= 48.5;mathrm{J}
end{align*}
$$