
Physics
1st Edition
ISBN: 9780133256925
Table of contents
Textbook solutions
All Solutions
Page 656: Practice Problems
Exercise 30
Step 1
1 of 2
The condition for the first dark fringe ($m=1$) reads
$$
Wsintheta=lambda
$$
yielding
$$
sintheta = frac{lambda}{W}.
$$
Here we see that by increasing $lambda$ we also increase $sintheta$. Since the sine is an increasing function of the angle (if it falls in range of $0-90^circ$) we know that the angle here will also increase.
Result
2 of 2
Click here for the solution.
Exercise 31
Step 1
1 of 2
$textbf{Given values:}$
$$
begin{align*}
m &pm 1 \
lambda &= 690 text{ nm} \
theta &pm 23 text{textdegree}
end{align*}
$$
The slit width, $W$ , which produces a first-order diffraction minima can be obtain by applying the relation :
$$
begin{align*}
W sin theta &= m lambda \
W &= dfrac{m lambda}{sin theta} \
&= dfrac{1 (690 text{ nm})}{sin 23 text{textdegree}}
end{align*}
$$
$$
{boxed{W = 1765.92 text{ nm}}}
$$
Result
2 of 2
$$
{W = 1765.92 text{ nm}}
$$
{W = 1765.92 text{ nm}}
$$
unlock