All Solutions
Page 646: Lesson Check
$$
mlambda = dsinthetaRightarrow sintheta = frac{mlambda}{d}.
$$
This means that the sine of the angle $m-th$ ray makes is proportional to $lambda$ and since the sine is an increasing function of an angle (if it falls into the range of $0-90^circ$ which is here the case) so by increasing $lambda$ we increase the angle of deviation of each ray and thus the spacing between them.
$$
lambda=dsinthetaRightarrow sintheta = frac{lambda}{d}Rightarrowtheta=arcsinleft( frac{lambda}{d}right) =0.7^circ.
$$
$$
2lambda=dsinthetaRightarrow lambda=frac{dsintheta}{2} =frac{48.0times10^{-5}text{ m }timessin(0.0990^circ)}{2} = 415text{ nm}.
$$
$$
y=Ltantheta
$$
where $theta$ is the interference angle. This yields
$$
tantheta = frac{y}{L}Rightarrow theta=arctanleft(frac{y}{L}right)=arctanleft(frac{0.0536text{ m}}{8.75text{ m}}right) =0.35^circ.
$$
Now writing down the condition for the first bright fringe ($m=1$) we get
$$
lambda = dsinthetaRightarrow d=frac{lambda}{sintheta} = frac{546times10^{-9}text{ m}}{sin35^circ} = 89.4text{ $mu$m}
$$
which is the required separation.