All Solutions
Page 605: Lesson Check
$$
t_1=frac{0.32text{ m}}{v_{ice}} =frac{0.32text{ m}}{frac{c}{n_{ice}}} = frac{n_{ice}times 0.32text{ m}}{c} = frac{1.31times 0.32text{ m}}{3times10^8text{ m/s}} = 1.4text{ ns}
$$
while through water
$$
t_2=frac{4text{ m}-0.32text{ m}}{v_{water}} =frac{3.68text{ m}}{frac{c}{n_{water}}} = frac{n_{water}times 3.68text{ m}}{c} = frac{1.33times 3.68text{ m}}{3times10^8text{ m/s}} = 16.3text{ ns}
$$
yielding for the total time
$$
t=t_1+t_2=17.7text{ ns}.
$$
$$
n_{air}sinalpha_{in}=n_{material}sinalpha_{reff}.
$$
Putting $n_{air} = 1$ we get
$$
n_{material} = frac{sinalpha_{in}}{sinalpha_{reff}} = frac{sin 25^circ}{sin15^circ} = 1.63.
$$
$$
n_{air}sinalpha_{in}=n_{material}sinalpha_{reff}.
$$
Putting $n_{air} = 1$ we get
$$
sinalpha_{ref} = frac{sinalpha_{in}}{n} = frac{sin35^circ}{1.38}Rightarrow alpha_{ref}=arcsinleft( frac{sin35^circ}{1.38}right)=24.5^circ.
$$
b) Using Snell’s law we have
$$
2.41sinalpha_{in} = 1.33sin 42^circRightarrow sinalpha_{in} = frac{ 1.33sin42^circ}{2.41}Rightarrowalpha_{in} = arcsinleft(frac{1.33sin42^circ}{2.41}right) = 22^circ.
$$