All Solutions
Page 59: Practice Problems
$$
begin{align*}
x_{f}=x_{i}+vt\
end{align*}
$$
where $x_{f}$ is the final position, $x_{i}$ initial position, $v$ velocity, and $t$ elapsed time, we can quickly determine that the bunny’s initial position is
$$
begin{align*}
boxed{x_{i}=8.3 text{m}}\
end{align*}
$$
$$
begin{align*}
boxed{v=2.2 frac{text{m}}{text{s}}}\
end{align*}
$$
begin{align*}
textbf{(a)} quad &boxed{x_{i}=8.3 text{m}}\
\
textbf{(b)} quad &boxed{v=2.2 frac{text{m}}{text{s}}}\
end{align*}
$$
Provided that the initial position and the velocity of an object are known, the position-time equation gives its position $x$ at any time $t$,
$$
begin{align*}
x_{f}=x_{i}+vt
end{align*}
$$
This means that $textbf{we have to calculate the ball’s velocity first}$ if we are to write the position-time equation.
$$
begin{align*}
v&=dfrac{Delta x}{Delta t}=dfrac{x_{f}-x_{i}}{Delta t}\
&=dfrac{7.8 text{m}-1.6 text{m}}{3.1 text{s}}\
&=quadboxed{2.0 dfrac{text{m}}{text{s}}}\
end{align*}
$$
Substituting the values for the initial position and the velocity in the equation of motion gives:
$$
begin{align*}
boxed{x_{f}=1.6 text{m}+left(2.0 dfrac{text{m}}{text{s}}right)t}\
end{align*}
$$
$$
begin{align*}
8.6 text{m}&=1.6 text{m}+left(2.0 dfrac{text{m}}{text{s}}right)t\
rightarrowquad t&=dfrac{8.6 text{m}-1.6 text{m}}{2.0 frac{text{m}}{text{s}}}\
&=quadboxed{3.5 text{s}}\
end{align*}
$$
begin{align*}
textbf{(a)}quad &boxed{x_{f}=1.6 text{m}+left(2.0 dfrac{text{m}}{text{s}}right)t}\
\
\
\
textbf{(b)}quad &boxed{t=3.5 text{s}}\
end{align*}
$$
tt {(a)To find the velocity we Rearrange the Position-Time equation of Motion with $v$ as a subject:}
$$
$$
begin{align*}
x_f=x_i+vt Rightarrow v &= frac{x_f-x_i}{t}\
&=frac{(7.8m)-(1.6m)}{(3.1s)}\
&= boxed{2 frac{m}{s})}
end{align*}
$$
$tt {Finally we substitute the variables of the equation with the actual values:}$
$$
boxed{textcolor{#4257b2}{x_f=(1.6m)+(2frac{m}{s})t}}
$$
tt{ (b) Rearrange the Position-Time equation of Motion with $t$ as a subject:}
$$
$$
begin{align*}
t &= frac{x_f-x_i}{v}\
&=frac{(8.6m)-(1.6m)}{(2frac{m}{s})}\
&=boxed{textcolor{#4257b2}{3.5m}}
end{align*}
$$
The equation in the linear form look like $x_f=x_i+vt$ where time $t$ is multiplied by velocity $v$, and the answer is added to the initial position. We will use the given equation to find the velocity together with initial speed of the bowling ball.
$$
textbf{Solution:}
$$
The displacement divided by times gives the velocity of the bowl:
$$
v_{av}=frac{Delta x}{Delta t}=frac{7.8m-1.6m}{3.1s}=color{#4257b2} boxed{bf 2.0m/s}
$$
Now writing the equation in the form $x_f=x_i+vt$ we get
$$
x_f=color{#4257b2} boxed{bf 1.6m+2.0m/stimes t}
$$
Computing $t$ from the equation we get
$$
textbf{Solution:}
$$
$$
x_f-x_i=vt
$$
$$
frac{x_f-x_i}{v}=t
$$
Substituting values we get
$$
t=frac{8.6-1.6m}{20m/s}=color{#4257b2} boxed{bf 3.5s}
$$
x_f=1.6m+2.0m/stimes t;and;;x_f=1.6m+2.0m/stimes t
$$