All Solutions
Page 549: Practice Problems
$$
theta=60.0text{textdegree}
$$
Unknown:
$$
I_{f}/I_{i}
$$
Solution
$$
frac{I_{f}}{I_{i}}=frac{1}{2}cos^{2}theta=frac{1}{2}timescos^{2}60.0text{textdegree}=frac{1}{8}
$$
So the final intensity will be $1/8$ times the initial intensity.
Hence the transmitted intensity will decrease.
$$
I_{f}=0.250I_{i}Rightarrow I_{f}/I_{i}=0.250
$$
Unknown:
$$
theta=?
$$
Solution
$$
cos^{2}theta=2frac{I_{f}}{I_{i}}=2times0.250=0.500=frac{1}{2}
$$
$$
thereforetheta=cos^{-1}left(frac{1}{sqrt{2}}right)=45text{textdegree}
$$
45text{textdegree}
$$
$$
theta=30.0text{textdegree}
$$
Unknown
$I_{f}/I_{i}=?$
We know that
$$
frac{I_{f}}{I_{i}}=frac{1}{2}cos^{2}theta=frac{1}{2}cos^{2}30.0text{textdegree}=0.375
$$
So $0.375$ fraction of the initial intensity will be transmitted.
$$
I_{i}=1.2 {rm W/m^{2}}
$$
$$
theta_{1}=35text{textdegree}
$$
$$
theta_{2}=45text{textdegree}
$$
Known
$I_{f}=?$
Solution:
$$
I_{f}=I_{i}cos^2theta_{1}cos^2theta_{2}=left(1.2 {rm W/m^{2}}right)left(cos^2 35text{textdegree}right)left(cos^2 45text{textdegree}right)=0.40 {rm W/m^{2}}
$$
0.40 {rm W/m^{2}}
$$