All Solutions
Page 52: Practice Problems
$$
begin{align*}
v_{avg}=dfrac{Delta x}{Delta t}=dfrac{x_{f}-x_{i}}{t_{f}-t_{i}}\
end{align*}
$$
In this case, the average velocity is negative, which means that our athlete moves in the negative direction, towards the starting line. Using the equation above, solving for $Delta t$, and plugging in the values, we get
$$
begin{align*}
Delta t&=dfrac{Delta x}{v_{avg}}\
&=dfrac{x_{f}-x_{i}}{v_{avg}}\
&=dfrac{0 text{m}-50.0 text{m}}{-1.50 frac{text{m}}{text{s}}}\
&=quadboxed{33.3 text{s}}\
end{align*}
$$
begin{align*}
boxed{Delta t=33.3 text{s}}\
end{align*}
$$
$$
begin{align*}
text{average speed}&=dfrac{text{distance}}{text{elapsed time}}\
&=dfrac{40 075 text{km}}{80 text{days}cdotleft(frac{24 text{h}}{1 text{day}}right)}\
&=dfrac{40 075 text{km}}{1920 text{h}}\
&=quadboxed{20.9 frac{text{km}}{text{h}}}\
end{align*}
$$
$$
begin{align*}
boxed{v_{avg}=0 frac{text{km}}{text{h}}}\
end{align*}
$$
begin{align*}
textbf{(a)} quad &boxed{text{average speed}=20.9 frac{text{km}}{text{h}}}\
\
\
\
textbf{(b)} quad &boxed{v_{avg}=0 frac{text{km}}{text{h}}}\
end{align*}
$$
Use the definitions of average speed and average velocity to answer the questions.
$$
textbf{Solution:}
$$
Find the average speed, noting the distance travelled is the 40,075-km circumference of the Earth:
$$
Avg.,Speed=frac{distance}{time,passed}=frac{40075km}{80cancel{d}}times{1cancel{d}}{24h}=color{#4257b2} boxed{bf 20.9km/hr}
$$
Because the initial and final positions are the same, hence $Delta x = 0$:
$$
textbf{Solution:}
$$
$$
v_{av}=frac{Delta x}{Delta t}=color{#4257b2} boxed{bf 0}
$$
Avg.,Speed=20.9km/hr;and;v_{av}=0
$$
$$
begin{align*}
v_{avg,A}&=dfrac{10 text{m}}{1 text{s}}\
&=quadboxed{10 frac{text{m}}{text{s}}}\
end{align*}
$$
Train B heads south, which is the negative direction, and covers 900 meters in 60 seconds. Therefore, the average velocity of train B is
$$
begin{align*}
v_{avg,B}&=dfrac{-900 text{m}}{60 text{s}}\
&=quadboxed{-15 frac{text{m}}{text{s}}}\
end{align*}
$$
Train C moves south with a speed of $20 frac{text{m}}{text{s}}$. It’s average velocity is
$$
begin{align*}
v_{avg,C}&=dfrac{-20 text{m}}{1 text{s}}\
&=quadboxed{-20 frac{text{m}}{text{s}}}\
end{align*}
$$
Finally, train D moves in the positive direction, and it’s average velocity is
$$
begin{align*}
v_{avg,D}&=dfrac{24 text{m}}{2 text{s}}\
&=quadboxed{12 frac{text{m}}{text{s}}}\
end{align*}
$$
$$
begin{align*}
boxed{v_{avg,C}<v_{avg,B}<v_{avg,A}<v_{avg,D}}\
end{align*}
$$
begin{align*}
boxed{v_{avg,C}<v_{avg,B}<v_{avg,A}<v_{avg,D}}\
end{align*}
$$
textbf{Concept:}
$$
We need to calculate the average velocity of the train for each case, assuming north be the positive direction and then compare the velocities to rank them from the most negative to the most positive.
$$
textbf{Solution:}
$$
Calculate the average velocity of train A:
$$
v_{av,A}=frac{Delta x_A}{Delta t}=frac{10m}{1.0s}=color{#4257b2} boxed{bf 10m/s}
$$
Repeat the process for B, C and D we get:
$$
v_{av,B}=frac{Delta x_B}{Delta t}=frac{-900m}{60 s}=color{#4257b2} boxed{bf -15m/s}
$$
$$
v_{av,C}=frac{Delta x_C}{Delta t}=frac{-2times 10m}{1.0s}=color{#4257b2} boxed{bf -20m/s}
$$
$$
v_{av,D}=frac{Delta x_D}{Delta t}=frac{+24m}{2.0s}=color{#4257b2} boxed{bf +12m/s}
$$
Now by comparison we conclude that…
$$
color{#4257b2} boxed{bf v_{av,c}<v_{av,B}<v_{av,A}<v_{av,D}}
$$
v_{av,c}<v_{av,B}<v_{av,A}<v_{av,D}
$$