All Solutions
Page 41: Standardized Test Prep
$$
begin{align*}
KE&=dfrac{1}{2}mv^{2}\
v^{2}&=left. dfrac{2(KE)}{m}quadquadright/ sqrt{quad}\
rightarrow &quadboxed{v=sqrt{dfrac{2(KE)}{m}}}\
end{align*}
$$
Therefore, the correct answer is $textbf{(B)}$.
$left[text{L}right]=left[dfrac{text{L}}{text{T}}right]left[text{T}right] +left[dfrac{text{L}}{text{T}^{2}}right]left[text{T}^{2}right]$
$left[text{L}right]=left[text{L}right]+left[text{L}right]$
$left[dfrac{text{L}}{text{T}}right]=left[dfrac{text{L}}{text{T}^{2}}right]left[text{T}right]$
$left[dfrac{text{L}}{text{T}}right]=left[dfrac{text{L}}{text{T}}right]$
$left[dfrac{text{L}^{2}}{text{T}^{2}}right]=left[dfrac{text{L}}{text{T}^{2}}right]left[text{L}^{2}right]$
$left[dfrac{text{L}^{2}}{text{T}^{2}}right]neqleft[dfrac{text{L}^{3}}{text{T}^{2}}right]$
$left[dfrac{text{L}^{2}}{text{T}^{2}}right]=left[dfrac{text{L}}{text{T}^{2}}right]left[text{L}right]$
$left[dfrac{text{L}^{2}}{text{T}^{2}}right]=left[dfrac{text{L}^{2}}{text{T}^{2}}right]$
RHS has dimensions $(1/2)ad^2 = (length)^3/(time)^2$.
They do not match.
$textbf{(A)}$ $1.00cdot 10^{4} text{cm}=10 000 text{cm}=100 text{m}$
$textbf{(B)}$ $1.00cdot 10^{-1} text{km}=0.1 text{km}=100 text{m}$
$textbf{(C)}$ $1.00cdot 10^{2} text{m}=100 text{m}$
$textbf{(D)}$ $1.00cdot 10^{6} text{mm}=1 000 000 text{mm}=1000 text{m}neq 100 text{m}$
Therefore, the answer is $textbf{(D)}$.
So, for $x=10$, $y=200$. That means that the equation $textbf{(A)}$ describes the line on the graph.
All that being said, the correct answer is $textbf{(C)}$.
$$
begin{align*}
l_{avg}&=dfrac{l_{1}+l_{2}+l_{3}+l_{4}+l_{5}}{5}\
&=dfrac{12.2 text{cm}+12.1 text{cm}+12 text{cm}+11.9 text{cm}+12.20 text{cm}}{5}\
&=quadboxed{12 text{cm}}\
end{align*}
$$
Based on the result in part $textbf{(a)}$, you can conclude the same thing. Different measurements have different numbers of significant figures, and your final result can’t be more accurate than the least accurate input value, i.e., if all measurements had four significant figures, the average calculated length would differ from the one we got, and would be a more precise representation of the actual length.
$textbf{(b)}$ Recording all measurements to the appropriate number of significant figures leads to a more precise result.
tt{(a)the average length is: }
$$
$$
frac{12.2+12.1+12+11.9+12.20}{5}=12.08cm
$$
using the $textit{Rule of addition and substraction}$ on the nominator we only have two significant digits
The result should be then: $12cm$
(b) writing the result with the right number of significant digits allow refers to the accuracy and precision of the measurements overall.
tt{(a) 12cm,(b) Accuracy and precision notions. }
$$