
All Solutions
Page 38: Assessment
$$
begin{align*}
E&= mc^{2} & mathrm{divide~by~c^{2}} \
frac{E}{c^{2}} &= m \
m &= frac{E}{c^{2}}
end{align*}
$$
m = dfrac{E}{c^{2}}
$$
$$
begin{align*}
15~mathrm{kilometer} times frac{1000~mathrm{meter}}{1~mathrm{kilometer}} &= boxed{ 15000~mathrm{meters} }
end{align*}
$$
15000~mathrm{meters}
$$
$$
begin{align*}
12000~mathrm{meter} times frac{1~mathrm{kilometer}}{1000~mathrm{meter}} &= boxed{ 12~mathrm{kilometers} }
end{align*}
$$
12~mathrm{kilometers}
$$
$$
begin{align*}
5 times 10^{-6}~mathrm{m} times frac{1~mathrm{km}}{1 times 10^{3}~mathrm{m}} &= boxed{ 5 times 10^{-9}~mathrm{km} }
end{align*}
$$
5 times 10^{-9}~mathrm{km}
$$
We know that $1~mathrm{kilo} = 1 times 10^{3}$. We have
$$
begin{align*}
33200~mathrm{dollars} times frac{1~mathrm{kilodollars}}{1 times 10^{3}~mathrm{dollars}} &= boxed{ 33.2 ~mathrm{kilodollars} }
end{align*}
$$
We know that $1~mathrm{mega} = 1 times 10^{6}$. We have
$$
begin{align*}
33200~mathrm{dollars} times frac{1~mathrm{megadollars}}{1 times 10^{6}~mathrm{dollars}} &= boxed{ 0.0332 ~mathrm{megadollars} }
end{align*}
$$
item [a)] $33.2 ~mathrm{kilodollars}$
item [b)] $0.0332 ~mathrm{megadollars}$
end{enumerate}
$$
begin{align*}
T &= frac{1~mathrm{s}}{200} \
T &= 5 times 10^{-3}~mathrm{s} \
&= left( 5 times 10^{-3}~mathrm{s} right) times left( frac{1~mathrm{ms}}{10^{-3}~mathrm{s}} right) \
T &= boxed{ 5~mathrm{ms} }
end{align*}
$$
5~mathrm{ms}
$$
$$
begin{align*}
L &= left( 0.012~mathrm{km} right) left( frac{1000~mathrm{m}}{1~mathrm{km}} right) \
L &= 12.0~mathrm{m}
end{align*}
$$
$$
begin{align*}
V &= LWH \
&= left( 12.0~mathrm{m} right) left( 10.5~mathrm{m} right) left( 4.95~mathrm{m} right) \
V &= boxed{ 623.7~mathrm{m^{3}} }
end{align*}
$$
V = 623.7~mathrm{m^{3}}
$$
$$
begin{align*}
left( 1.2~mathrm{L} right) times left( frac{1~mathrm{mL}}{0.001~mathrm{L}} right) &= boxed{ 1200~mathrm{mL} }
end{align*}
$$
1200~mathrm{mL}
$$
$$
begin{align*}
520.2~mathrm{carats} times frac{0.20~mathrm{g}}{1~mathrm{carat}} &= 106.04~mathrm{g}
end{align*}
$$
$$
begin{align*}
106.04~mathrm{g} times frac{1~mathrm{kg}}{1000~mathrm{g}} &= 0.10604~mathrm{kg}
end{align*}
$$
$$
begin{align*}
0.10604~mathrm{kg} times frac{2.21~mathrm{lb}}{1~mathrm{kg}} &= boxed{ 0.2343~mathrm{lb} }
end{align*}
$$
0.2333~mathrm{lb}
$$
$$
begin{align*}
left( 0.3~mathrm{Gm/s} right) times left( frac{1 times 10^{9}~mathrm{m}}{1~mathrm{Gm}} right) &= boxed{ 3.0 times 10^{8}~mathrm{m/s} }
end{align*}
$$
3.0 times 10^{8}~mathrm{m/s}
$$
From the conversion factors, $1~mathrm{mi} = 1.61~mathrm{km}$. This means that one mile is longer than one kilometer, and thus $65$ mi/h must be traveling $textbf{faster}$ than $65$ km/h.
We use the conversion factor $1~mathrm{mi} = 1.61~mathrm{km}$.
$$
begin{align*}
left( 65~mathrm{mi/h} right) times left( frac{1.61~mathrm{km}}{1~mathrm{mi}} right) &= boxed{ 104.65~mathrm{km/h} }
end{align*}
$$
$$
begin{align*}
v_text{f} &= v_text{i} + at \
frac{L}{T} &= frac{L}{T} + left( frac{L}{T^{2}} right)left( T right) \
frac{L}{T} &= frac{L}{T} + frac{L}{T} \
frac{L}{T} &stackrel{checkmark}{=} frac{L}{T}\
end{align*}
$$
We see that the equation is indeed dimensionally consistent.
$$
begin{align*}
vt &= d & text{divide both sides by $v$} \
frac{vt}{v} &= frac{d}{v} \
implies t &= frac{d}{v} \
&= frac{17~mathrm{color{#c34632}cm}}{left( 2.5~mathrm{{color{#c34632}cm}/s} right)} \
t &= 6.7729~mathrm{s} \
t &= boxed{ 6.8~mathrm{s} }
end{align*}
$$
We report the answer with the same number of significant digits has the given with the least number of significant digits. In this case, the distance $d = 17$ cm only has 2 significant digits.
t = 6.8~mathrm{s}
$$
$$
begin{align*}
A &= pi r^{2} \
&= pi left( 12.77~mathrm{m} right)^{2} \
&= 512.3086~mathrm{m^{2}} \
A &= boxed{ 512.3~mathrm{m^{2}} }
end{align*}
$$
We report the answer with the same number of significant digits has the given with the least number of significant digits. In this case, the radius $r = 12.55$ m only has 4 significant digits.
A = 512.3~mathrm{m^{2}}
$$
$$
begin{align*}
A &= frac{1}{2}bh \
&= frac{1}{2} left( 4.1~mathrm{m} right) left( 6.15~mathrm{m} right) \
&= 12.6075~mathrm{m^{2}} \
A &= boxed{ 13~mathrm{m^{2}} }
end{align*}
$$
We report the answer with the same number of significant digits has the given with the least number of significant digits. In this case, the height $h = 4.1$ m only has 2 significant digits.
A = 13~mathrm{m^{2}}
$$
$$
begin{align*}
M &= m_{1} + m_{2} + m_{3} \
&= left( 1.07~mathrm{kg} right) + left( 6.0~mathrm{kg} right) + left( 6.05~mathrm{kg} right) \
&= 13.12~mathrm{kg} \
M &= boxed{ 13~mathrm{kg} }
end{align*}
$$
We report the answer with the same number of significant digits has the given with the least number of significant digits. In this case, the mass of the rock cod $m_{2} = 6.0$ kg only has 2 significant digits.
M = 13~mathrm{kg}
$$
$$
begin{align*}
P &= 2left( l + w right) \
&= 2left( left[ 25.2~mathrm{cm} right] + left[ 18.1~mathrm{cm} right] right) \
&= 2left( 43.3~mathrm{cm} right)\
P &= boxed{86.6~mathrm{cm}}
end{align*}
$$
We report the answer with the same number of significant digits has the given with the least number of significant digits. In this case, both the given quantities have 3 significant digits.
P = 86.6~mathrm{cm}
$$
For this part, the given number is $0.000054$. Notice that the leading zeroes do not contribute to the number of significant figures, so the number must be $textbf{2}$.
For this part, the given number is $3.001 times 10^{5}$. We only count the significant figures in the number $3.001$. Since the zeroes are between nonzero numbers, they are accounted in the number of significant figures. Therefore, there are $textbf{4}$ significant figures in the given number.
item [a)] $2$
item [b)] $4$
end{enumerate}
$$
boxed{ 1.414 }
$$
1.414
$$
begin{enumerate}
item temperature
item mass
item speed
end{enumerate}
$$
begin{align*}
100~mathrm{m/s} &= boxed{ 1.00 times 10^{2}~mathrm{m/s} }
end{align*}
$$
$$
boxed{ c = 3.00 times 10^{8}~mathrm{m/s} }
$$
3.00 times 10^{8}~mathrm{m/s}
$$
$$
begin{align*}
v_text{f} &= v_text{i} + Delta v\
&= left( 2.2~mathrm{m/s} right) + left( 5.225~mathrm{m/s^{2}} right) \
&= 7.425~mathrm{m/s} \
v_text{f} &= boxed{ 7.4~mathrm{m/s} }
end{align*}
$$
v_text{f} = 7.4~mathrm{m/s}
$$
The given quantity with the least number significant figures is $w = 47~mathrm{cm}$. Since the area is a product, its number of significant figures is the same as the least number of significant figures in the given. Hence, the number is $textbf{2}$.
The area is the product of the height and width. We have
$$
begin{align*}
A &= hw \
&= left( 31.25~mathrm{cm} right) left( 47~mathrm{cm} right) \
&= 1468.75~mathrm{cm^{2}} \
A &= boxed{1500~mathrm{cm^{2}}}
end{align*}
$$
item [a)] $2$
item [b)] $1500~mathrm{cm^{2}}$
end{enumerate}
The perimeter $P$ of a rectangle is given by $P = 2left( l + w right)$. Using this formula,
$$
begin{align*}
P &= 2left( l + 2 right)\
&= 2left( left[ 144.3~mathrm{m} right] + left[ 47.66~mathrm{m} right] right)\
&= 2left( 191.96~mathrm{m} right) \
&= 383.92~mathrm{m} \
P &= boxed{ 383.9~mathrm{m} }
end{align*}
$$
The area $A$ is given by $A = lw$. We have
$$
begin{align*}
A &= lw \
&= left( 144.3~mathrm{m} right) left( 47.66~mathrm{m} right) \
&= 6877.338~mathrm{m^{2}} \
A&= boxed{ 6877~mathrm{m^{2}} }
end{align*}
$$
item [a)] $P = 383.9~mathrm{m}$
item [b)] $A = 6877~mathrm{m^{2}}$
end{enumerate}
A hypothesis is a proposed explanation for an observed phenomenon.
Hypothesis is the scientific explanation of observation that can be tested experimentally.
$$
begin{align*}
pi r^{2}&=pi[L^{2}]={[L^2]}\
\
\
\
2pi r&=2pi[L]={[L]}\
end{align*}
$$
Therefore, the first expression gives the area of a circle.
The dimension of $2 pi r$ is $L$.
Since the dimension of area is $L^2$, $pi r^2$ is the area of the circle.
tt{$T+d$ where $d$ is of a length dimension and $T$ is of a Time dimension, the two terms of the equation do not have the same dimension, therefore, the equation is incorrect \
based on the 1.5 Table $frac{d}{T}$ has the dimension of $frac{L}{T}$, this is the dimension of Velocity}
$$
tt{$T+d$ does not make sense,$frac{d}{T}$ expresses Velocity }
$$
After all, it doesn’t make sense to measure both time and distance in centimeters, as they are two fundamentally different quantities with different dimensions; one being time, and the other being length. As mentioned before, the dimension of a physical quantity refers to the type of quantity in question. Therefore, $textbf{if two quantities have different dimensions, then they must be of a different type, and are measured in different units that can’t be converted to one another.}$
The important thing to notice here is that you can convert one unit to another, which is an indicator that the quantities are of the same type and dimension.
$textbf{(b)}$ Yes, two quantities can have the same dimensions but different units. As long as you can convert units to one another, you are dealing with the same dimension.
$$
begin{align*}
& textbf{A.} quad vt=[dfrac{L}{T}][T]=[L]\
\
\
\
& textbf{B.} quad dfrac{1}{2}at^{2}=dfrac{L}{T^{2}}[T^{2}]=[L]\
\
\
\
& textbf{C.} quad 2at=dfrac{[L]}{[T^{2}]}[T]=dfrac{[L]}{[T]}\
\
\
\
& textbf{D.} quad dfrac{v^{2}}{a}=dfrac{[L^{2}]}{[T^{2}]}dfrac{[T^{2}]}{[L]}=[L]\
end{align*}
$$
Therefore, quantities $textbf{A., B.,}$ and $textbf{D.}$ have the same dimension as distance.
The dimension of time ($t$) is $T$.
The dimension of velocity ($v$) is $L T^{-1}$.
The dimension of acceleration ($a$) is $L T^{-2}$.
(a) The dimension of $vt$ is $L T^{-1} times T = L$. So $vt$ has the dimension of distance.
(b) The dimension of $dfrac{1}{2} at^2$ is $L T^{-2} times T^2 = L$. So $dfrac{1}{2} at^2$ also has the dimension of distance.
(c) The dimension of $2at$ is $L T^{-2} times T = LT^{-1}$. So it does not have the dimension of distance.
(d) The dimension of $dfrac{v^2}{a}$ is $dfrac{(LT^{-1})^2}{LT^{-2}} = dfrac{L^{cancel{2}} cancel{T^{-2}}}{cancel{L} cancel{T^{-2}}} = L$. So it also the dimension of distance.
$$
begin{align*}
& textbf{A.} quad frac{1}{2}at^{2}=frac{L}{T^{2}}[T^{2}]=[L]\
\
\
\
& textbf{B.} quad at=frac{[L]}{[T^{2}]}[T]=frac{[L]}{[T]}\
\
\
\
& textbf{C.} quad sqrt{frac{2x}{a}}=sqrt{[L]frac{[T^{2}]}{[L]}}=[T]\
\
\
\
& textbf{D.} quad sqrt{2ax}=sqrt{frac{L}{[T^{2}]}[L]}=sqrt{frac{[L]}{[T^{2}]}}=frac{[L]}{[T]}\
end{align*}
$$
Therefore, quantities $textbf{B.}$ and $textbf{D.}$ have the same dimension as distance.
A. Dimension of the quantity is $[LT^{-2}][T^{2}]=[L]$, is the dimension
of length.
B. The dimension of the quantity is $[LT^{-2}][T]=[LT^{-1}]$, is
the dimension of speed.
C. The dimension of the quantity is $[[L][LT^{-2}]^{-1}]^{1/2}=[T]$,
is the dimension of Time.
D. The dimension of the quantity is $[[LT^{-2}][L]]^{1/2}=[LT^{-1}]$,
the dimension of speed.
So the quantity in B and D has the dimension of speed.
$$
begin{align*}
114 000 000 text{dollars}&=114 000 000cdot10^{-9} text{gigadollars}\
&=quadboxed{0.114 text{gigadollars}}\
end{align*}
$$
$$
begin{align*}
114 000 000 text{dollars}&=114 000 000cdot 10^{-12} text{teradollars}\
&=quadboxed{1.14cdot 10^{-4} text{teradollars}}
end{align*}
$$
begin{align*}
textbf{(a)}quadquad &boxed{0.114 text{gigadollars}}\
quad\
textbf{(b)}quadquad &boxed{1.14cdot 10^{-4} text{teradollars}}\
end{align*}
$$
$a)quad$ Movie earning in giga dollars $=boxed{(0.114)text{ gig dollars}}$
$a)quad$ Movie earning in tera dollars $=boxed{(1.14times10^{-4})text{ giga dollars}}$
$b)quad 1.14times10^{-4}$ teradollars
$$
begin{align*}
1 dfrac{text{m}}{text{s}}&=left(1 dfrac{text{m}}{text{s}}right)left(dfrac{1 text{km}}{1000 text{m}}right)left(dfrac{3600 text{s}}{1 text{h}}right)\
&=3.6 frac{text{km}}{text{h}}\
end{align*}
$$
Therefore, in kilometers per hour, the speed of 23 meters per second is
$$
begin{align*}
23 frac{text{m}}{text{s}}&=left(23 frac{text{m}}{text{s}}right)left(dfrac{3.6 frac{text{km}}{text{h}}}{1 frac{text{m}}{text{s}}}right)\
&=82.8 frac{text{km}}{text{h}}\
&=quadboxed{83 frac{text{km}}{text{h}}}
end{align*}
$$
.$qquadqquadqquadquad=(23)dfrac{m}{s}timesdfrac{(1)km}{(1000)m}timesdfrac{(3600)s}{(1)h}$
.$qquadqquadqquadquad=(82.8)km/h$
.$qquadqquadqquadquad=boxed{(83)km/h}$
( Based on multiplication rule for significant digits )
$$
begin{align*}
(1 text{m})^{2}=(100 text{cm})^{2}=1cdot 10^{4} text{cm}^{2}\
(1 text{m})^{3}=(100 text{cm})^{3}=1cdot 10^{6} text{cm}^{2}
end{align*}
$$
Multiplying the dimensions, the volume in cubic meters is
$$
begin{align*}
V&=Ltimes Wtimes H\
&=631 text{m}times 646 text{m}times34 text{m}\
&=13 859 248 text{m}^{3}\
&=1.4 cdot 10^{7} text{m}^{3}\
end{align*}
$$
Therefore, the volume in cubic centimeters is
$$
begin{align*}
V&=1.39cdot 10^{7} text{m}^{3}=1.39cdot 10^{7} text{m}^{3}timesleft(dfrac{10^{6} text{cm}^{3}}{1 text{m}^{3}}right)\
&=quadboxed{1.4 cdot 10^{13} text{cm}^{3}}
end{align*}
$$
begin{align*}
boxed{V=1.4cdot 10^{13} text{cm}^{3}}\
end{align*}
$$
tt{ The formula to calculate volume is: }
$$
$$
V= l*w*h= (631*646*34)*10^6=14*10^{12}cm^3
$$
tt{The volume is : $14*10^{12}cm^3$}
$$
First, we write the following equation:
$$
begin{align*}
dfrac{9 192 631 770 text{cycles}}{1 text{s}}&=dfrac{1.5cdot 10^{6} text{cycles}}{t}\
end{align*}
$$
Solving the above equation for $t$, and using $textbf{the rule for multiplication and division for the number of significant figures in the result,}$ we get
$$
begin{align*}
t&=dfrac{1.5cdot 10^{6} text{cycles}}{9 192 631 770 text{cycles}}times 1 text{s}\
&=1.631741636cdot 10^{-4} text{s}\
&=quadboxed{1.6cdot 10^{-4} text{s}}\
end{align*}
$$
begin{align*}
boxed{t=1.6cdot 10^{-4} text{s}}\
end{align*}
$$
tt{let’s assume that $t$ is the time needed for the atom to complete the$1.5$million cycle, using the rule of three :}
$$
$$
begin{align*}
frac{9192631770}{1}&=frac{1500000}{t}\
t&=frac{1500000}{9192631770}\
&=1.63174*10^{-4}s\
&=boxed{textcolor{#4257b2}{1.6*10^{-4}s}}
end{align*}
$$
tt{$t=1.6*10^{-4}s$}
$$
$$
begin{align*}
33 text{m}&=(33 text{m})left(dfrac{1000 text{mm}}{1 text{m}}right)\
&=quadboxed{33 000 text{mm}}\
end{align*}
$$
begin{align*}
boxed{33 000 text{mm}}\
end{align*}
$$
tt{ we know that 1m=1000mm, Consequentially: }
$$
$$
33m=33m*frac{1000mm}{1m}=boxed{color{#4257b2}{33000mm}}
$$
33000mm
$$
$$
begin{align*}
70 mutext{m}&=70 mutext{m}left(dfrac{1 text{m}}{10^{6} mutext{m}}right)\
&=quadboxed{70cdot 10^{-6} text{m}}\
end{align*}
$$
$$
begin{align*}
70 mutext{m}&=70cdot 10^{-6} text{m}\
&=(70cdot 10^{-6} text{m})left(dfrac{1 text{km}}{10^{3} text{m}}right)\
&=quadboxed{70cdot 10^{-9} text{km}}\
end{align*}
$$
$textbf{(b)}$ $boxed{70cdot 10^{-9} text{km}}$
$a)$ Thickness $=(70)mu mtimesdfrac{(10^{-6})m}{(1)mu m}=boxed{(70times10^{-6})m}$
$b)$ Thickness $=(70)mu m=(70)mu mtimesdfrac{(10^{-9})km}{(1)mu m}=boxed{(70times10^{-9})km}$
$$
b)quad(70times10^{-9})km
$$
$$
begin{align*}
dfrac{136.8cdot 10^{12} text{calculations}}{1 text{s}}=dfrac{n}{1 mutext{s}}
end{align*}
$$
Converting microseconds to seconds and solving the equation for $n$, we get
$$
begin{align*}
n&=dfrac{136.8cdot 10^{12} text{calculations}}{1 text{s}}times 1cdot 10^{-6} text{s}\
&=136.8cdot 10^{6} text{calculations}\
end{align*}
$$
Since $136.8cdot 10^{12} text{calculations}$ has 4 significant figures, and $1 text{s}$ has only one significant figure, $textbf{using the rule for multiplication and division for significant figures we write the final result as}$
$$
begin{align*}
boxed{n=1cdot 10^{8} text{calculations}}\
end{align*}
$$
begin{align*}
boxed{1cdot 10^{8} text{calculations}}\
end{align*}
$$
tt{Assuming $c$ is the number of calculations that is made in $1mu s$, we calculate:}
$$
$$
begin{align*}
frac{136.8T calculation}{1s}&=frac{c}{1mu s}\
c&=frac{136,8*10^{12}calculation*1 mu s}{10^6 mu s}\
&=136,8*10^6 calculation
end{align*}
$$
136,8*10^6 calculation
$$
$$
begin{align*}
3.00cdot 10^{8} frac{text{m}}{text{s}}=3.00cdot 10^{10} frac{text{cm}}{text{s}}\
end{align*}
$$
$$
begin{align*}
text{speed}&=dfrac{text{distance}}{text{time}}\
rightarrow text{time}&=dfrac{text{distance}}{text{speed}}\
\
\
\
1 text{jiffy}&=dfrac{1 text{cm}}{3.00cdot 10^{10} frac{text{cm}}{text{s}}}\
&=3.33cdot 10^{-11} text{s}\
&=quadboxed{3cdot 10^{-11} text{s}}\
end{align*}
$$
* We used the rule for multiplication and division for significant figures, as per usual.
$$
begin{align*}
1 text{jiffy}=3cdot 10^{-11} text{s}\
\
\
\
dfrac{1 text{jiffy}}{3cdot 10^{-11} text{s}}=1\
end{align*}
$$
Therefore, the number of jiffys in one minute is
$$
begin{align*}
1 text{min}&=(60 text{s})left(dfrac{1 text{jiffy}}{3cdot 10^{-11} text{s}}right)\
\
\
\
&=quadboxed{2cdot 10^{12} text{jiffys}}\
end{align*}
$$
begin{align*}
textbf{(a)} quad &boxed{1 text{jiffy}=3cdot 10^{-11} text{s}}\
\
\
\
textbf{(b)} quad &boxed{1 text{min}=2cdot 10^{12} text{jiffys}}\
end{align*}
$$
$$
begin{align*}
V=atimes A\
end{align*}
$$
In our case, $A$ is the area of the resulting slick, and $a$ its thickness.
Keep in mind that the total volume of the oil remains unchanged, the molecules just rearrange themselves one next to another so that the slick is one molecule thick.
Converting $mutext{m}$ to meters and solving for $A$, we obtain
$$
begin{align*}
1.0 text{m}^{3}&=0.50cdot 10^{-6} text{m}times A\
A&=dfrac{1.0 text{m}^{3}}{0.50cdot 10^{-6} text{m}}\
&=quadboxed{2.0cdot 10^{6} text{m}^{2}}\
end{align*}
$$
$$
a=0.50 {rm mu m}=0.50times10^{-3} {rm m}
$$
So the height of the spilled oil is $a=0.50times10^{-3}$ m, and
if $A$ is the surface area then the volume is given by
$$
V=left(1 m^{3}right)=aA=left(0.50times10^{-6} mright)A
$$
There fore
$$
A=frac{left(1 m^{3}right)}{left(0.50times10^{-6} mright)}=2times10^{6} m^{2}
$$
2times10^{6} m^{2}
$$
$$
begin{align*}
9.81 dfrac{text{m}}{text{s}^{2}}&=left(9.81 dfrac{text{m}}{text{s}^{2}}right)left(dfrac{100 frac{text{cm}}{text{s}^{2}}}{1 frac{text{m}}{text{s}^{2}}}right)\
&=9.81times 100 frac{text{cm}}{text{s}^{2}}\
&=quadboxed{981 frac{text{cm}}{text{s}^{2}}}\
end{align*}
$$
So $9.81: dfrac{m}{s^2} = 9.81 :dfrac{cancel{m} times dfrac{100:cm}{cancel{m}}}{s^2} = 9.81 times 100 dfrac{cm}{s^2} = 981 :dfrac{cm}{s^2}$
981: dfrac{cm}{s^2}
$$
$$
g=9.8 frac{m}{s^{2}}=9.8timesfrac{10^{2} cm}{s^{2}}=9.8times10^{2} m/s^{2}
$$
9.8times 10^2 mathrm{cm/s^2}
$$
$$
begin{align*}
v^{2}&=2ax^{p}\
\
\
\
left[dfrac{L^{2}}{T^{2}}right]&=left[dfrac{L}{T^{2}}right][L]^{p}\
[L]^{2}&=[L]^{1+p}\
\
\
\
2&=1+p\
& boxed{p=1}\
end{align*}
$$
tt{to have a dimensionally consistent equation all terms should have the same dimension: }
$$
$$
begin{align*}
v^2&=2ax^p\
(frac{L}{T})^2&=frac{L}{T^2}L^p\
frac{L^2}{T^2}&=frac{L^{p+1}}{T^2}\
L^2&=L^{p+1}\
2&=p+1\
p&=1
end{align*}
$$
tt{$p=1$}
$$
$$
begin{align*}
a&=2xt^{p}\
\
\
\
left[dfrac{L}{T^{2}}right]&=[L][T]^{p}\
dfrac{1}{[T]^{2}}&=[T]^{p}\
[T]^{-2}&=[T]^{p}\
\
\
\
&boxed{p=-2}\
end{align*}
$$
tt{To have a dimensionally consistent equation all terms of the equation should have the same dimension:}
$$
$$
begin{align*}
a&=2xt^p\
frac{L}{T^2}&=L*T^p\
T^{-2}&=T^p\
p&=-2
end{align*}
$$
p=-2
$$
$textbf{(b)}$ A baseball game lasts about three hours, which is somewhere around 11 000 seconds, so an estimate would be $10^{4}$.
$textbf{(c)}$ Usually, a heart rate is 60 to 100 beats in a minute, or roughly one heartbeat per second, which is $10^{0}$.
$textbf{(d)}$ The Earth is about 4.6 billion, or $4.6cdot 10^{9}$, years old. In seconds, that would be approximately $10^{17}$.
$textbf{(e)}$ Assuming that you are in your teens or early twenties, the estimated order-of-magnitude of your age in seconds would be $10^{8}$.
$textbf{(a)}$ a year: $10^{7} text{s}$
$textbf{(b)}$ a baseball game: $10^{4} text{s}$
$textbf{(c)}$ a heartbeat: $10^{0}=1 text{s}$
$textbf{(d)}$ the age of Earth: $10^{17} text{s}$
$textbf{(e)}$ your age: $10^{8} text{s}$
$textbf{(b)}$ $10^{4} text{s}$
$textbf{(c)}$ $10^{0}=1 text{s}$
$textbf{(d)}$ $10^{17} text{s}$
$textbf{(e)}$ $10^{8} text{s}$
$textbf{(b)}$ A fly is usually smaller than 1 centimeter, so it’s safe to assume that its length is in milimeters. Therefore, a rough estimate for the length of a fly in meters is $10^{-2}$.
$textbf{(c)}$ A normal car is usually up to 3 meters long, so the answer is again $10^{0}$.
$textbf{(d)}$ An ordinary commercial jetliner is roughly 50 meters long, which is on the order of $10^{1}$.
$textbf{(e)}$ The longest interstate highway stretching from coast to coast is more than 4000 kilometers long, so an order-of-magnitude estimate in meters of such an interstate is $10^{6}$.
$textbf{(a)}$ your height: $10^{0} text{m}$
$textbf{(b)}$ a fly: $10^{-2} text{m}$
$textbf{(c)}$ a car: $10^{0} text{m}$
$textbf{(d)}$ a jetliner: $10^{1} text{m}$
$textbf{(e)}$ an interstate highway stretching from coast to coast: $10^{6} text{m}$
$textbf{(b)}$ $10^{-2} text{m}$
$textbf{(c)}$ $10^{0} text{m}$
$textbf{(d)}$ $10^{1} text{m}$
$textbf{(e)}$ $10^{6} text{m}$
$boxed{pi=3.14}$
$$
begin{align*}
boxed{pi=3.1416}\
end{align*}
$$
Note that it’s not 3.1415 because the first digit to be dropped (which is 9) is equal to or greater than 5, so it’s correct to increase the previous digit (5 in this case) by 1.
begin{align*}
textbf{(a)} quad &boxed{pi=3.14}\
textbf{(b)} quad &boxed{pi=3.1416}\
end{align*}
$$
$$
begin{align*}
A=r^{2}pi\
end{align*}
$$
So, the area of the circle in question is
$$
begin{align*}
A&=(24.87 text{m})^{2}pi\
&=1943.128149 text{m}^{2}\
&=quadboxed{1943 text{m}^{2}}\
end{align*}
$$
We dropped all the decimals because of the rule for significant figures for multiplication and division: the result can’t be more precise than the least accurately known input value. In this case, the radius is known to four significant figures; thus, the final result can’t have more than 4 significant figures.
begin{align*}
boxed{A=1943 text{m}^{2}}\
end{align*}
$$
Radius is given as $r = 24.87:m$
So,
$A = pi times (24.87)^2 = 3.142 times (24.87)^2 = 1943 :m^2$
A = 1943 : m^2
$$
A couple thousand is also too little, so we can conclude that we’re dealing with tens of thousands. At this point, we can eliminate a hundred thousand because that really is $textit{a lot}$ of seats for a typical stadium; in fact, it’s way too many.
Our best guess would be that such stadiums can hold a capacity of 30 to 50 thousand people; anything above 60 000 is a stretch.
Keep in mind that you’re only giving a rough estimate of something, not the precise value, and with practice, your intuition and reasoning will get better.
The population of the US is on the order of $10^{8}$, and the order-of-magnitude of the number of weeks in a year is $10^{1}$. So, the roughest estimate would be that the number of gallon containers of milk purchased in a year is on the order of $10^{9}$.
However, since we’ve assumed that the population is $3cdot 10^{8}$, and the number of weeks is 52 (or $5.2cdot 10^{1}$), $textbf{a better estimate would be on the order of $10^{10}$,}$ because when multiplying 52 by 3, you get 156, which is on the order of $10^{2}$.
Multiplying only the powers of 10, we get that the approximate weight is on the order of $10^{11}$ grams. However, $textbf{a more precise number would be on the order of $10^{12}$,}$ because we’re actually multiplying 60 by $156cdot 10^{8}$, which is just under 10 000. Therefore, we can safely say that the approximate weight of empty one gallon plastic milk jugs is $10^{12}$ grams, or $10^{6}$ tons.
$textbf{(b)}$ $10^{6}$ tons of plastic.
$$
begin{align*}
v_{avg}&=dfrac{Delta x}{Delta t}\
&=dfrac{4800 text{km}}{3 text{h}}\
&=quadboxed{1600 frac{text{km}}{text{h}}}\
end{align*}
$$
$$
begin{align*}
c&=v_{avg}times 24 text{h}\
&=1600 frac{text{km}}{text{h}}times 24 text{h}\
&=quadboxed{38 400 text{km}}\
end{align*}
$$
$$
begin{align*}
r&=dfrac{c}{2pi}\
&=dfrac{38 400 text{km}}{2pi}\
&=quadboxed{6112 text{km}}\
end{align*}
$$
* When you plug those values into your calculator, you’ll get a decimal number. However, since we only have to $textit{estimate}$ the radius, it’s more than okay to round up the result like above.
begin{align*}
textbf{(a)} quad &boxed{v_{avg}=1600 frac{text{km}}{text{h}}}\
\
textbf{(b)} quad &boxed{c=38 400 text{km}}\
\
textbf{(c)} quad &boxed{r=6112 text{km}}\
end{align*}
$$
Distance between Newyork and Seattle = 4800 km
Time difference = 3 hrs.
(a)
From the given information, we can figure out that it takes three hours for the earth to rotate 4800 km.
So, the rotational speed = 4800 km/3 hrs
= 1600 km/hr
(b)
The earth rotates a full circle in 24 hrs.
So, in 24 hrs, it travels 24 X 1600 = 38400 km
(c)
Circumference = 2πr
38400 km = 2 X 3.14 X r
r = 38400/6.28
= 6114.6 km
* $left[dfrac{text{L}}{text{T}}right]=left[dfrac{text{L}}{text{T}^{2}}right]cdotleft[text{T}right]$
* $left[dfrac{text{L}}{text{T}}right]=left[dfrac{text{L}}{text{T}}right]$
The equation $v=at$ is $textbf{dimensionally consistent.}$
* $left[dfrac{text{L}}{text{T}}right]=left[dfrac{text{L}}{text{T}^{2}}right]cdotleft[text{T}^{2}right]$
* $left[dfrac{text{L}}{text{T}}right]neqleft[text{L}right]$
The equation $v=frac{1}{2}at^{2}$ is $textbf{dimensionally inconsistent.}$
* $left[text{T}right]=left[dfrac{text{L}}{text{T}^{2}}right]cdotleft[dfrac{text{T}}{text{L}}right]$
* $left[text{T}right]neqleft[dfrac{1}{text{T}}right]$
The equation $t=frac{a}{v}$ is $textbf{dimensionally inconsistent.}$
* $left[dfrac{text{L}^{2}}{text{T}^{2}}right]=left[dfrac{text{L}}{text{T}^{2}}right]cdotleft[text{L}right]$
* $left[dfrac{text{L}^{2}}{text{T}^{2}}right]=left[dfrac{text{L}^{2}}{text{T}^{2}}right]$
The equation $v^{2}=2ax$ is $textbf{dimensionally consistent.}$
$tt{A.$v=at Rightarrow frac{L}{T}=frac{L}{T^2}*T Rightarrow frac{L}{T}=frac{L}{T} $:Dimesnsionally consistent }$
$tt{B.$v=frac{1}{2}at^2 Rightarrow frac{L}{T}=frac{L}{T^2}*T^2 Rightarrow frac{L}{T}=L$:not Dimesnsionally consistent}$
$tt{C.$t=frac{a}{v} Rightarrow T =frac{frac{L}{T^2}}{frac{L}{T}} Rightarrow T=frac{1}{T}$:not Dimesnsionally consistent}$
$$
tt{D.$v^2=2ax Rightarrow (frac{L}{T})^2=frac{L}{T^2}*L Rightarrow frac{L^2}{T^2}=frac{L^2}{T^2}$:Dimesnsionally consistent}
$$
tt{A and D are Dimensionally consistent}
$$
$$
begin{align*}
[a]=left[dfrac{text{L}}{text{T}^{2}}right]
end{align*}
$$
* $left[xt^{2}right]overset{?}{=}left[aright]$
* $left[text{L}right]cdotleft[text{T}^{2}right]neqleft[dfrac{text{L}}{text{T}^{2}}right]$
Quantity $xt^{2}$ $textbf{doesn’t have the dimension of acceleration.}$
* $left[dfrac{v^{2}}{x}right]overset{?}{=}left[a right]$
* $left[dfrac{text{L}^{2}}{text{T}^{2}}right]cdotleft[dfrac{1}{text{L}}right]=left[dfrac{text{L}}{text{T}^{2}}right]$
* $left[dfrac{text{L}}{text{T}^{2}}right]=left[dfrac{text{L}}{text{T}^{2}}right]$
Quantity $frac{v^{2}}{x}$ $textbf{has the dimension of acceleration.}$
* $left[dfrac{x}{t^{2}}right]overset{?}{=}left[aright]$
* $left[text{L}right]cdotleft[dfrac{1}{text{T}^{2}}right]=left[dfrac{text{L}}{text{T}^{2}}right]$
Quantity $frac{x}{t^{2}}$ $textbf{has the dimension of acceleration.}$
* $left[dfrac{v}{t}right]overset{?}{=}left[aright]$
* $left[dfrac{text{L}}{text{T}}right]cdotleft[dfrac{1}{text{T}}right]=left[dfrac{text{L}}{text{T}^{2}}right]$
Quantity $frac{v}{t}$ $textbf{has the dimension of acceleration.}$
$tt{A.$xt^2 Rightarrow L*T^2$}$
$tt{B.$frac{v^2}{x} Rightarrow frac{(frac{L}{T})^2}{L}Rightarrow frac{L}{T^2}$}$
$tt{C.$frac{x}{t^2} Rightarrow frac{L}{T^2}$}$
$tt{D.$frac{v}{t}Rightarrow frac{frac{L}{T}}{T}Rightarrow frac{L}{T^2}$}$
tt{B., C., D. have the dimension of an acceleration}
$$
$$
begin{align*}
675 text{nm}&=675 text{nm}timesleft(dfrac{1cdot 10^{-6} text{mm}}{1 text{nm}}right)=boxed{675cdot 10^{-6} text{mm}}\
end{align*}
$$
$$
begin{align*}
675 text{nm}&=675 text{nm}timesleft(dfrac{1cdot 10^{-9} text{m}}{1 text{nm}}right)=boxed{675cdot 10^{-9} text{m}}\
end{align*}
$$
begin{align*}
textbf{(a)}quad &boxed{675 text{nm}=675cdot 10^{-6} text{mm}}\
textbf{(b)}quad &boxed{675 text{nm}=675cdot 10^{-9} text{m}}\
end{align*}
$$
tt{converting 675nm wavelength to:\
(a)millimeters:$675nm=675nm*frac{10^{-6}mm}{1nm}=675*10^{-6}mm$\
(b)meter:$675nm=675nm*frac{10^{-9}m}{1nm}=675*10^{-9}m$}
$$
tt{(a)$675*10^{-6}mm$,(b)$675*10^{-9}m$}
$$
tt{The speed of the glacier is : $64frac{m}{day}=frac{64mfrac{10^{-3}km}{1m}}{1dayfrac{24h}{1day}}=boxed{2.7*10^{-3}frac{km}{h}} $}
$$
2.7*10^{-3}frac{km}{h}
$$
$$
begin{align*}
64 dfrac{text{m}}{text{day}}&=64 dfrac{text{m}}{text{day}}timesleft(dfrac{10^{-3} text{km}}{1 text{m}}right)timesleft(dfrac{1 text{day}}{24 text{h}}right)\
&=64timesdfrac{10^{-3} text{km}}{24 text{h}}\
&=quadboxed{2.7cdot 10^{-3} dfrac{text{km}}{text{h}}}\
end{align*}
$$
begin{align*}
boxed{2.7cdot 10^{-3} dfrac{text{km}}{text{h}}}\
end{align*}
$$
$$
begin{align*}
dfrac{605 text{wingbeats}}{1 text{s}}&=dfrac{n_{wb}}{60 text{s}}\
\
rightarrow n_{wb}&=dfrac{605 text{wingbeats}}{1 text{s}}times 60 text{s}\
\
&= quadboxed{36300 text{wingbeats}}\
end{align*}
$$
$$
begin{align*}
dfrac{605 text{wingbeats}}{1 text{s}}&=dfrac{1 text{wingbeat}}{t_{wb}}\
rightarrow t_{wb}&=dfrac{1 text{s}}{605}\
end{align*}
$$
and a cesium-133 atom completes 9 192 631 770 cycles per second. The number of cycles $n_{c}$ that this atom completes during one mosquito wingbeat is
$$
begin{align*}
dfrac{9 192 631 770 text{cycles}}{1 text{s}}&=dfrac{n_{c}}{t_{wb}}\
\
rightarrow n_{c}&=dfrac{9 192 631 770 text{cycles}}{1 text{s}}times t_{wb}\
&=dfrac{9 192 631 770 text{cycles}}{1 text{s}}times dfrac{1 text{s}}{605}\
&=15 194 432.68 text{cycles}\
&=quadboxed{15.2cdot 10^{6} text{cycles}}\
end{align*}
$$
Again, we used the rule for multiplication and division for significant figures when writing the final result.
begin{align*}
textbf{(a)} quad &boxed{n_{wb}=36300 text{wingbeats}}\
\
textbf{(b)} quad &boxed{n_{c}=15.2cdot 10^{6} text{cycles}}\
end{align*}
$$
$$
begin{align*}
10 text{feet}&=10 text{feet}timesleft(dfrac{1 text{m}}{3.28 text{feet}}right)\
&=quadboxed{3 text{m}}\
end{align*}
$$
$$
begin{align*}
18.52 frac{text{km}}{text{h}}&=left(18.52 frac{text{km}}{text{h}}right)left(dfrac{frac{1000 text{m}}{1 text{km}}}{frac{3600 text{s}}{1 text{h}}}right)\
&=18.52times dfrac{5}{18}frac{text{m}}{text{s}}\
&=5.14444 frac{text{m}}{text{s}}\
&=quadboxed{5 frac{text{m}}{text{s}}}\
end{align*}
$$
Notice that the least accurately known input value is, in fact, 10, which has only 1 significant figure.
$rightarrow quadquad boxed{10 text{ft}=3 text{m}}$
$rightarrow quad boxed{10 text{knots}=5 frac{text{m}}{text{s}}}$
$$
height=left(10 feetright)timesfrac{left(1 mright)}{left(3.28 feetright)}=3.0 {rm m}
$$
And the speed is
$$
10 knot=frac{10 nautical mile}{1 hour}=frac{10times1.852times10^{3} m}{3600 s}=5.1 m/s
$$
$$
begin{align*}
140 dfrac{text{m}}{text{s}}&=140 dfrac{text{m}}{text{s}}timesleft(dfrac{10^{-3} text{km}}{1 text{m}}right)timesleft(dfrac{3600 text{s}}{1 text{h}}right)\
&=140timesdfrac{10^{-3} text{km}cdot3600}{1 text{h}}\
&=quadboxed{504 dfrac{text{km}}{text{h}}}\
end{align*}
$$
$$
begin{align*}
d&=vt\
&=140 dfrac{text{m}}{text{s}}cdot 5.0 text{ms}timesleft(dfrac{10^{-3} text{s}}{1 text{ms}}right)\
&=140 dfrac{text{m}}{text{s}}cdot5.0cdot 10^{-3} text{s}\
&=quadboxed{0.70 text{m}}\
end{align*}
$$
begin{align*}
textbf{(a)}quad &boxed{v=504 dfrac{text{km}}{text{h}}}\
textbf{(b)}quad &boxed{d=0.70 text{m}}\
end{align*}
$$
tt{(a)nerve impulse speed is: }
$$
$$
frac{140m}{1s}=frac{140mfrac{1km}{1000m}}{1sfrac{1h}{3600s}}=boxed{504frac{km}{h}}
$$
(b)Let’s assume that L is the length that the impluse can travel is 5ms, we have:
$$
frac{140m}{1000ms}=frac{L}{5ms}Rightarrow L=frac{140m*5ms}{1000ms}=boxed{0.7m}
$$
tt{(a) $504frac{km}{h}$,(b)$0.7m$}
$$
$$
begin{align*}
dfrac{1.6 text{mg}}{1 text{min}}&=dfrac{Delta m}{1 text{day}}\
Delta m&=dfrac{1.6 text{mg}}{1 text{min}}times 1 text{day}\
&=dfrac{1.6 text{mg}}{1 text{min}}times 1440 text{min}\
&=2304 text{mg}\
&=quadboxed{2.3cdot 10^{3} text{mg}}\
end{align*}
$$
$$
begin{align*}
dfrac{1.6cdot 10^{-6} text{kg}}{1 text{min}}&=dfrac{0.0075 text{kg}}{Delta t}\
Delta t&=0.0075 text{kg}timesdfrac{1 text{min}}{1.6cdot 10^{-6} text{kg}}\
&=4687.5 text{min}\
&=78.125 text{h}\
&=quadboxed{78 text{h}}\
end{align*}
$$
begin{align*}
textbf{(a)} quad &boxed{Delta m=2.3cdot 10^{3} text{mg}}\
\
textbf{(b)} quad &boxed{Delta t=78 text{h}}\
end{align*}
$$
$$
begin{align*}
31 frac{text{cm}}{text{s}}&=left(31 frac{text{cm}}{text{s}}right)left(dfrac{frac{1 text{m}}{100 text{cm}}}{frac{1 text{min}}{60 text{s}}}right)\
&=31times 0.6 frac{text{m}}{text{min}}\
&=18.6 frac{text{m}}{text{min}}\
end{align*}
$$
Next, we’ll calculate the time it took to traverse 150 meters:
$$
begin{align*}
v&=dfrac{Delta x}{Delta t}\
Delta t&=dfrac{Delta x}{v}\
&=dfrac{150 text{m}}{18.6 frac{text{m}}{text{min}}}\
&=8.1 text{min}
end{align*}
$$
Finally, we know that the rate of rotation is 7 revolutions per minute. The number of completed revolutions $n$ after 150 meters is
$$
begin{align*}
dfrac{7 text{revolutions}}{1 text{min}}&=dfrac{n}{8.1 text{min}}\
n&=8.1 text{min}timesdfrac{7 text{revolutions}}{1 text{min}}\
&=56.7 text{revolutions}\
&=quadboxed{56 text{revolutions}}\
end{align*}
$$
In this case, we can’t just round up the number in the final result like we usually do; instead, we have to think about what is asked and what’s the correct answer. The probe $textit{didn’t complete}$ 57 revolutions by the time it was 150 meters away from the spacecraft; it completed 56 full revolutions and was about to make the 57th revolution. That’s the reason why we wrote the result like we did.
$$
begin{align*}
dfrac{7 text{revolutions}}{60 text{s}}&=dfrac{1 text{revolution}}{t}\
t&=1 text{revolution}timesdfrac{60 text{s}}{7 text{revolutions}}\
&=8.6 text{s}\
end{align*}
$$
Using the formula for speed, solving for distance $d$, and applying the rule for multiplication and division for significant figures, we get the following result:
$$
begin{align*}
d&=vt\
&=31 frac{text{cm}}{text{s}}times 8.6 text{s}\
&=266.6 text{cm}\
&=quadboxed{2.7 text{m}}\
end{align*}
$$
begin{align*}
textbf{(a)} quad &boxed{n=56 text{revolutions}}\
\
textbf{(b)} quad &boxed{d=2.7 text{m}}\
end{align*}
$$
$100:cm = 1:m$ and $1:min = 60:s$.
So the relative speed of Huygens is given by
$31: dfrac{cm}{s} = 31: dfrac{cancel{cm} times dfrac{1:m}{100:cancel{cm}}}{cancel{s} times dfrac{1:min}{60:cancel{s}}} = 31 times dfrac{60}{100} :dfrac{m}{min} =18.6 :dfrac{m}{min}$
So time taken to travel $150:m$ is given by
$Time:taken = dfrac{Distance:traveled}{Speed} = dfrac{150}{18.6} approx 8.1 :min$
In one minute, Huygens undergoes 7 revolutions. So in 8.1 minutes it completes $8.1 times 7 = 56.7 approx 56$ revolutions.
In 1 minute or 60 seconds, Huygens undergoes 7 revolutions. So the time taken for one revolution is $dfrac{60}{7} = 8.6:s$.
The distance traveled during one revolution is given by
$Distance = Speed times Time = 31 : dfrac{cm}{cancel{s}} times 8.6 :cancel{s} = 266.6:cm = 266.6 :cancel{cm} times dfrac{1:m}{100:cancel{cm}} approx 2.7:m$
(b) 2.7 m
tt{to have a dimensionally consistent equation, all terms of the equation must have the same dimension: }
$$
$$
begin{align*}
a&=vt^p\
frac{L}{T^2}&=frac{L}{T}T^p\
T^{-2}&=T^{p-1}\
-2&=p-1 \
&Rightarrow boxed{p=-1}
end{align*}
$$
p=-1
$$
$$
begin{align*}
left[aright]&=left[vt^{p}right]\
\
\
\
dfrac{text{[L]}}{text{[T]}^{2}}&=dfrac{[text{L}]}{[text{T}]}timestext{[T]}^{p}\
dfrac{1}{text{[T]}^{2}}&=dfrac{text{[T]}^{p}}{text{[T]}}\
text{[T]}^{-2}&=text{[T]}^{p-1}\
\
\
\
rightarrowquad -2&=p-1\
&boxed{p=-1}\
end{align*}
$$
begin{align*}
boxed{p=-1}
end{align*}
$$
tt{to have a dimensionally consistent all the terms of the equation must have the same dimension: }
$$
$$
begin{align*}
T&=2pi L^pg^q\
T&=L^p(frac{L}{T^2})^q\
T&=frac{L^{p+q}}{T^{2q}}\
-2q=1& &p+q=0\
q=frac{-1}{2}& &p=-q=frac{1}{2}
end{align*}
$$
q=frac{-1}{2}, p={1}{2}
$$
$$
begin{align*}
left[Tright]&=2pileft[L^{p}g^{q}right]\
\
\
\
text{[T]}&=text{[L]}^{p}cdotleft[dfrac{text{L}}{text{T}^{2}}right]^{q}\
text{[T]}&=text{[L]}^{p}cdotdfrac{text{[L]}^{q}}{text{[T]}^{2q}}\
\
\
\
rightarrowquad text{[T]}^{1}cdottext{[L]}^{0}&=text{[L]}^{p+q}cdottext{[T]}^{-2q}\
end{align*}
$$
This gives us two equations:
$$
begin{align}
text{[T]}^{1}&=text{[T]}^{-2q}\
text{[L]}^{0}&=text{[L]}^{p+q}
end{align}
$$
$$
begin{align*}
1=-2q\
rightarrowquadboxed{q=-dfrac{1}{2}}\
end{align*}
$$
Plugging the result above into equation (2) gives the value for $p$:
$$
begin{align*}
0&=p+q\
0&=p-dfrac{1}{2}\
rightarrowquad &boxed{p=dfrac{1}{2}}\
end{align*}
$$
begin{align*}
&boxed{q=-dfrac{1}{2}}\
&boxed{p=dfrac{1}{2}}\
end{align*}
$$
The SI units are units of measurement used in almost every country in the world. It has seven base units, and allows for an unlimited number of additional units that are derived from base units. The base units are $textbf{the second, meter, kilogram, ampere, kelvin, mole, and candela.}$ It’s important to note that the SI is an evolving system, meaning that unit definitions are modified as the technology and precision improve.
It’s worth mentioning that $textbf{some other countries use both systems as well.}$ The imperial system originated in the UK, where it’s still used in everyday life. In addition to the UK, the former Commonwealth countries like Canada, India, and Australia, also often use the imperial system.
In their line of work, $textbf{meteorologists have to be comfortable with the physics of fluids and waves to be able to predict the local weather as precisely as possible.}$ The applications of those branches include determining the atmospheric pressure over a certain area, tracking the motion of storm clouds (based on something called the Doppler shift), and many more.
$circquad$ Meteorology: physics of fluids and waves
$circquad$ Biology: electrostatics, wave optics
* Click for more detail.
$$
begin{align*}
N=T-5.0
end{align*}
$$
where $N$ is the number of chirps in $7.0 text{s}$, we are to $textbf{determine how many times does the cricket chirp in $21 text{s}$ at a temperature of $22^{circ} text{C}$.}$ Since the equation gives the number of chirps in $7.0 text{s}$, we’ll $textbf{multiply the result by 3}$ to get the correct answer.
$$
begin{align*}
N_{7.0}&=22-5.0\
&=17\
end{align*}
$$
Multiplying the obtained result by 3 gives us the number of chirps in $21 text{s}$:
$$
begin{align*}
N&=3cdot N_{7.0}\
&=3cdot 17\
&=quadboxed{ 51 }\
end{align*}
$$
begin{align*}
boxed{N=51}\
end{align*}
$$
tt{the chirping Rate formula :$N=T-5.0$, is for every 7s, therefore we have to divide the total chirping time by the rate and then use the formula, }
$$
$$
tt {the number of chirps is:}
$$
$$
N=frac{21s}{7s}*(T-5)=3*(22-5)=boxed{51 chirps}
$$
tt{$51 chirps$}
$$
for $T=10 Rightarrow N=5$
From this information, we can deduce that (B) and (C) plots are two possible solutions, but we also know that$N=T-5$ is a linear function,therefore the correct answer is (C)
tt{Plot (C)}
$$
$$
begin{align*}
N=T-5.0
end{align*}
$$
which immediately $textbf{eliminates plot B,}$ as it is the only non-linear one.
$$
begin{align*}
y=ax+b
end{align*}
$$
we conclude that the slope in our case equals 1, further $textbf{eliminating plots D and E,}$ because the former has a slope of 0, and the latter has a negative slope.
$$
begin{align*}
N&=10-5.0\
rightarrowquad N&=5.0\
end{align*}
$$
Looking at the graph, it’s easy to see that $textbf{this eliminates plot A}$ because the corresponding value for $N$ when $T=10^{circ} text{C}$ is 20, which doesn’t correlate with the obtained result. We can, therefore, conclude that $textbf{plot C represents the chirping rate of the cricket.}$
$$
begin{align*}
N=T-5.0
end{align*}
$$
where $N$ is the number of chirps in $7.0 text{s}$.
Notice that $textbf{the rate of chirping is constant at a fixed temperature:}$ the cricket will chirp the same number of times in each $7.0 text{s}$ interval.
$$
begin{align*}
N&=15-5.0\
&=10\
end{align*}
$$
which we will conveniently write as
$$
begin{align*}
boxed{N=dfrac{10 text{chirps}}{7.0 text{s}}}\
end{align*}
$$
Since the rate of chirping is constant, $textbf{the following expression must hold true:}$
$$
begin{align*}
dfrac{10 text{chirps}}{7.0 text{s}}&=dfrac{80 text{chirps}}{t}\
end{align*}
$$
which solving for $t$ gives:
$$
begin{align*}
t&=80 text{chirps}timesdfrac{7.0 text{s}}{10 text{chirps}}\
&=quadboxed{56 text{s}}\
end{align*}
$$
The correct answer is, therefore, $textbf{C.}$
tt{plugging the value in the chirping rate formula:}
$$
$$
T=15-5=10 frac{chirps}{7s}
$$
$tt{Time needed for 80 chirps}$
$$
t=frac{80 chirps}{frac{10chirps}{7s}}=80chirps frac{7s}{10chirps}=boxed{56s}
$$
56s
$$
$$
begin{align*}
N=T-5.0
end{align*}
$$
where $N$ is defined as the number of chirps in $7.0 text{s}$.
The goal is to determine the temperature at which the cricket chirps 113 times per minute using the equation above, which requires calculating $N$ first.
$$
begin{align*}
boxed{dfrac{n}{t}=const.}\
end{align*}
$$
In this case, the cricket chirps 113 times in a minute,
$$
begin{align*}
dfrac{113 text{chirps}}{60 text{s}}=const.
end{align*}
$$
$$
begin{align*}
dfrac{n}{7.0 text{s}}=dfrac{113 text{chirps}}{60 text{s}}
end{align*}
$$
Solving for $n$ and applying $textbf{the rule for multiplication and division for significant figures}$ gives
$$
begin{align*}
n&=dfrac{113 text{chirps}}{60 text{s}}times 7.0 text{s}=13 text{chirps}\
end{align*}
$$
meaning that
$$
begin{align*}
Rightarrowquad &boxed{N=13}\
end{align*}
$$
* $13=T-5.0$
* $boxed{T=18 ^{circ}text{C}}$
Therefore, the correct option is $textbf{C.}$
tt{Chirping Rate of the cricket is:}
$$
$$
frac{113chirps}{1min}=frac{113chirps}{60s}Rightarrow frac{113chirps}{frac{60s}{7s}}=13chirps
$$
using the chirping formula :
$$
N=T-5 Rightarrow T=N+5=13+5=boxed{18^oC}
$$
tt{C.18}
$$