All Solutions
Page 32: Lesson Check
$circ$ mass
$circ$ length
$circ$ volume
* Length
* Time
* Temperature
tt{Length,Time,Temperature}
$$
$$
begin{align*}
boxed{1.00cdot 10^{2} frac{text{m}}{text{s}}}\
end{align*}
$$
begin{align*}
boxed{1.00cdot 10^{2} frac{text{m}}{text{s}}}\
end{align*}
$$
$$
begin{align*}
P&=2(h+w)\
&=2(0.95 text{m}+1.0 text{m})\
&=3.9 text{m}\
end{align*}
$$
The number of decimals, however, is different. The height has two decimals, but the width has only one.
$$
begin{align*}
boxed{P=3.9 text{m}}\
end{align*}
$$
$$
begin{align*}
boxed{P=3.9 text{m}}\
end{align*}
$$
using the $textit{Rule for Addition and Subtraction}$ we deduce that result must have 2 Decimal spaces.
tt{ the result has 2 Decimal spaces}
$$
$$
begin{align*}
boxed{c=3.00cdot 10^{8} frac{text{m}}{text{s}}}\
end{align*}
$$
begin{align*}
boxed{c=3.00cdot 10^{8} frac{text{m}}{text{s}}}\
end{align*}
$$
$$
begin{align*}
v_{f}&=2.2 dfrac{text{m}}{text{s}}+5.225 dfrac{text{m}}{text{s}}\
&=quadboxed{7.4 dfrac{text{m}}{text{s}}}\
end{align*}
$$
begin{align*}
boxed{v_{f}=7.4 dfrac{text{m}}{text{s}}}\
end{align*}
$$
Increase in speed of bus $=(5.225)m/s$
So, after $20s$ , final speed of bus $=(2.2+5.225)m/s=(7.425)m/s=boxed{(7.4)m/s}$
The final result has only one digit after decimal point, corresponding to value with least number of significant digits , i.e. $(2.2)m/s$ .
$$
begin{align*}
A&=htimes w\
&=31.25 text{cm}times 47 text{cm}\
&=1468.75 text{cm}^{2}\
end{align*}
$$
This, however, is neither the correct number of significant figures, nor the correct number of decimals. $textbf{The correct answer should have two significant digits and no decimals}$ (because the least accurate quantity has no decimals). Therefore, the area with the correct number of significant figures is
$$
begin{align*}
boxed{A=1500 text{cm}^{2}}\
end{align*}
$$
$textbf{(b)}$ $boxed{A=1500 text{cm}^{2}}$
Now, for the screen :
Hight $(h)=(31.25)cm$
Width $(w)=(47)cm$
$(47)cm$ has the least , i.e. $2$ significant digits
Area $=(htimes w)quad$will have $2$ significant digits
$b)$
Area of screen, $A=(htimes w)=(31.25times47)cm^2=(1468.75)cm^2$
In correct significant digits (i.e. $2$) , area , $A=boxed{1500cm^2}$
$b)quad1500$ $cm^2$
$$
begin{align*}
P&=2(l+ w)\
&=2(144.3 text{m}+47.66 text{m})\
&=quadboxed{383.9 text{m}}\
end{align*}
$$
where $l$ is the length of the lot, and $w$ is the width.
$$
begin{align*}
A&=ltimes w\
&=144.3 text{m}times 47.66 text{m}\
&=quadboxed{6877 text{m}^{2}}\
end{align*}
$$
with, again, $l$ being the length, and $w$ being the width of the lot.
$textbf{(b)}$ $boxed{P=6877 text{m}^{2}}$
. $qquadqquad$ width $=(47.66)m=omega(text{say})$
$a)quad$As per rule for addition, perimeter $=2(L+omega)=2(144.3+47.66)m$
.$qquadqquadqquadqquadqquadqquadqquadqquadquad=(383.92)m=boxed{(383.9)m}$
$b)quad$As per rule for multiplication, area $=(Ltimesomega)=(144.3times47.66)m^2$
.$qquadqquadqquadqquadqquadqquadqquadqquadquad=(6877.338)m^2=boxed{(6877)m^2}$
$b)quad 6877$ $m^2$