All Solutions
Page 27: Practice Problems
$$
begin{align*}
d&=vt\
t&=dfrac{d}{v}\
&=dfrac{17 text{cm}}{2.51 frac{text{cm}}{text{s}}}\
&=quadboxed{6.77 text{s}}\
end{align*}
$$
begin{align*}
boxed{t=6.77 text{s}}\
end{align*}
$$
So the time taken is
$$
t=frac{d}{v}=frac{(17 cm)}{(2.51 cm/s)}=6.8 s
$$
$$
begin{align*}
A=r^{2}pi\
end{align*}
$$
Therefore, the area of the circle in question, in meters squared, is
$$
begin{align*}
A&=(12.77 text{m})^{2}pi\
&=quadboxed{512.3 text{m}^{2}}\
end{align*}
$$
begin{align*}
boxed{A=512.3 text{m}^{2}}\
end{align*}
$$
$$
begin{align*}
A=dfrac{btimes h}{2}\
end{align*}
$$
where $b$ is base, and $h$ is height.
For a triangular sail boat with a height of $h=4.1 text{m}$ and a base of $b=6.15 text{m}$, the area is
$$
begin{align*}
A&=dfrac{6.15 text{m}times 4.1 text{m}}{2}\
&=quadboxed{13 text{m}^{2}}\
end{align*}
$$
begin{align*}
boxed{A=13 text{m}^{2}}\
end{align*}
$$
$$
frac{1}{2}(height)(base)
$$
Now we have $height=4.1$ m and $base=6.15$ m. So the area is
$$
frac{1}{2}(4.1 m)(6.15 m)=13 m^2
$$
13 m^2
$$