All Solutions
Page 22: Lesson Check
$1450 text{m}$ as $1.45 text{km}$.
1450 meters = ?k meters
Accelerations $17 frac{text{mm}}{text{s}^{2}}$ and $5 frac{text{km}}{text{h}^{2}}$ are measured in different units, but they both have the same dimension, which is length over time squared.
For example, time is a dimension and second or minute are the unit to measure the dimension.
$$
begin{align*}
0.3 frac{text{Gm}}{text{s}}&=left(0.3 frac{text{Gm}}{text{s}}right)left(dfrac{1 frac{text{m}}{text{s}}}{10^{-9} frac{text{Gm}}{text{s}}}right)\
&=quadboxed{3cdot 10^{8} frac{text{m}}{text{s}}}\
end{align*}
$$
begin{align*}
boxed{0.3 frac{text{Gm}}{text{s}}=3cdot 10^{8} frac{text{m}}{text{s}}}\
end{align*}
$$
$$
0.3 Gm/s=(0.3 Gm/s)left( frac{1 m/s}{10^{-9} Gm/s} right)=3times 10^{8} m/s
$$
$$
begin{align*}
65 frac{text{mi}}{text{h}}&=
left(65 frac{text{mi}}{text{h}}right)left(dfrac{1.61 frac{text{km}}{text{h}}}{1 frac{text{mi}}{text{h}}}right)\
&=boxed{104.65 frac{text{km}}{text{h}}}\
end{align*}
$$
$textbf{(b)}$ $boxed{65 frac{text{mi}}{text{h}}=104.65 frac{text{km}}{text{h}}}$
65 mi/h=(65 mi/h)left( frac{1 km/h}{0.62 mi/h} right)=104.8 km/h
$$
so 104.8 km/h will correspond to 65 mi/h
$$
begin{align*}
v_{f}&=v_{i}+at\
\
\
\
left[dfrac{text{L}}{text{T}}right]&=left[dfrac{text{L}}{text{T}}right]+left[dfrac{text{L}}{text{T}^{2}}right][text{T}]\
\
\
\
rightarrowquadquad &boxed{left[dfrac{text{L}}{text{T}}right]=left[dfrac{text{L}}{text{T}}right]+left[dfrac{text{L}}{text{T}}right]}\
end{align*}
$$
All terms have the same dimension, which means that the equation is dimensionally consistent.
$$
begin{align*}
boxed{left[dfrac{text{L}}{text{T}}right]=left[dfrac{text{L}}{text{T}}right]+left[dfrac{text{L}}{text{T}}right]}\
end{align*}
$$