All Solutions
Page 214: Practice Problems
$$
begin{aligned}
P &= frac{W}{t} \
implies W &= Pt
end{aligned}
$$
$$
begin{aligned}
frac{1}{2}m left( v_text{f}^{2} – v_text{i}^{2} right) &= Pt \
implies t &= frac{1}{2} frac{m}{P} left( v_text{f}^{2} – v_text{i}^{2} right) \
&= frac{1}{2} frac{1.30 times 10^{3}~mathrm{kg}}{3.05 times 10^{4}~mathrm{W}}left[ left( 22.4~mathrm{m/s} right)^{2} – left( 17.9~mathrm{m/s} right)^{2} right] \
&= 3.86484~mathrm{s} \
t &= boxed{ 3.86~mathrm{s} }
end{aligned}
$$
t = 3.86~mathrm{s}
$$
The work done on the ball is the change in kinetic energy. Initially, $v_text{i} = 0$. We have
$$
begin{aligned}
W &= Delta KE \
&= frac{1}{2}m left[ v_text{f}^{2} – v_text{i}^{2} right] \
&= frac{1}{2} left( 0.14~mathrm{kg} right) left[ left( 42.5~mathrm{m/s} right)^{2} – 0 right] \
&= 126.43750~mathrm{J} \
W &= boxed{ 130~mathrm{J} }
end{aligned}
$$
The power output is the amount of work done per unit time. We have
$$
begin{aligned}
P &= frac{W}{t} \
&= frac{126.43750~mathrm{J}}{0.060~mathrm{s}} \
&= 2107.29167~mathrm{W} \
P &= boxed{ 2100~mathrm{W} }
end{aligned}
$$
begin{aligned}
W &= 130~mathrm{J} \
P &= 2100~mathrm{W}
end{aligned}
$$