All Solutions
Page 211: Lesson Check
$$
Delta PE = -10~mathrm{J}
$$
$$
begin{aligned}
KE_text{i} + PE_text{i} &= KE_text{f} + PE_text{f} \
KE_text{i} – KE_text{f} &= PE_text{f} – PE_text{i} \
-left( KE_text{f} – KE_text{i} right) &= PE_text{f} – PE_text{i} \
-Delta KE &= Delta PE \
implies Delta KE &= – Delta PE\
&= -left( -10~mathrm{J} right) \
Delta KE &= boxed{ 10~mathrm{J} }
end{aligned}
$$
Delta KE = 10~mathrm{J}
$$
The kinetic energy is maximum when its speed is maximum. This happens right after it was thrown up from the hand and when it returns back to the hand.
The kinetic energy is minimum when the speed is minimum. The speed is zero at the peak, so the kinetic energy there must be the minimum.
The potential energy is proportional to the height of the ball. The maximum height is at the peak, so the potential energy is maximum when it is on its peak.
The potential energy is minimum at its lowest elevation. The lowest elevation is at the hand of the thrower.
$$
begin{aligned}
KE_text{i} + PE_text{i} &= KE_text{f} + PE_text{f} \
0 + mgh &= frac{1}{2}mv_text{f}^{2} + 0 \
v_text{f}^{2} &= 2gh \
implies v_text{f} &= sqrt{2gh} \
&= sqrt{2 left( 9.81~mathrm{m/s^{2}} right) left( 2.31~mathrm{m}right)} \
&= 6.73218~mathrm{m/s} \
v_text{f} &= boxed{6.73~mathrm{m/s}}
end{aligned}
$$
v_text{f} = 6.73~mathrm{m/s}
$$
$$
begin{aligned}
KE_text{i} + PE_text{i} &= KE_text{f} + PE_text{F} \
0 + mgh_text{i} &= KE_text{f} + mgh_text{f} \
implies KE_text{f} &= mg left( h_text{i} – h_text{f} right) \
&= left( 0.21~mathrm{kg} right) left( 9.81~mathrm{m/s^{2}} right) left( 4.0~mathrm{m} – 3.0~mathrm{m} right) \
&= 2.06010~mathrm{J} \
KE_text{f} &= boxed{ 2.1~mathrm{J} }
end{aligned}
$$
$$
begin{aligned}
PE_text{f} &= mgh_text{f} \
&= left( 0.21~mathrm{kg} right) left( 9.81~mathrm{m/s^{2}} right) left( 3.0~mathrm{m} right) \
&= 6.18030~mathrm{J} \
PE_text{f} &= boxed{ 6.2~mathrm{J} }
end{aligned}
$$
$$
begin{aligned}
E &= KE_text{f} + PE_text{f} \
&= 2.06010~mathrm{J} + 6.18030~mathrm{J} \
&= 8.24040~mathrm{J} \
E &= boxed{ 8.2~mathrm{J} }
end{aligned}
$$
begin{aligned}
KE_text{f} &= 2.1~mathrm{J} \
PE_text{f} &= 6.2~mathrm{J} \
E &= 8.2~mathrm{J}
end{aligned}
$$
to get the Potential Energy at 3.0m, we use
$$
PE_{gravity,f} = mgh = (0.21kg)(9.81m/s^2)(3m)
$$
$$
PE_{gravity,f} = 6.18J
$$
At 4.0m above ground, the apple is at rest therefore,
$$
KE_{i} = 0
$$
For the gravitational Potential Energy,
$$
PE_{gravity,i} = mgh = (0.21kg)(9.81m/s^2)(4.0m)
$$
$$
PE_{gravity,i} = 8.24J
$$
$$
ME = PE + KE = 8.24J + 0
$$
$$
ME = 8.24J
$$
$$
ME = PE_{gravity,f} + KE_{f}
$$
Rearranging,
$$
KE_{f} = ME – PE_{gravity,f}
$$
$$
KE_{f} = 8.24J – 6.18J
$$
$$
KE_{f} = 2.06J
$$
KE_{f} = 2.06J
$$
$$
PE_{gravity,f} = 6.18J
$$
$$
ME = 8.24J
$$
$$
begin{aligned}
KE_text{i} + PE_text{i} &= KE_text{f} + PE_text{f} \
KE + 0 &= 0 + mgh \
implies mgh &= KE
end{aligned}
$$
$$
begin{aligned}
KE_text{i} + PE_text{i} &= KE_text{f} + PE_text{f} \
KE + 0 &= KE_text{f} + frac{1}{2}mgh \
KE &= KE_text{f} + frac{1}{2}KE \
implies KE_text{f} &= frac{1}{2}KE
end{aligned}
$$
KE_text{f} = frac{1}{2}KE
$$