All Solutions
Page 206: Lesson Check
$$
begin{align*}
KE &= frac{1}{2}mv^{2} \
implies KE &propto v^{2}
end{align*}
$$
The kinetic energy is proportional to the square of the speed.
$$
begin{align*}
Delta KE &= W \
Delta KE &> 0
end{align*}
$$
The change in kinetic energy is positive, so the final kinetic energy must be greater than the initial kinetic energy. The kinetic energy $textbf{increases}$.
$$
Delta KE < 0
$$
$$
begin{align*}
W &= Delta K \
W &< 0
end{align*}
$$
The work done on the ball by the catcher is $textbf{negative}$.
$$
begin{align*}
Delta PE_text{gravity} &= mg Delta h \
Delta PE_text{gravity} &= left( m Delta h right) g \
Delta PE_text{gravity} &propto g
end{align*}
$$
The change in gravitational potential energy is proportional to the acceleration due to gravity in the surface.
$$
begin{aligned}
PE_text{spring} &= frac{1}{2}kx^{2} \
implies PE_text{spring} &propto x^{2}
end{aligned}
$$
The spring potential energy is proportional to the square of the amount of stretching.
$$
begin{align*}
KE &= frac{1}{2}mv^{2} \
&= frac{1}{2} left( 9.50 times 10^{-3}~mathrm{kg} right) left( 1.30 times 10^{3}~mathrm{m/s} right)^{2} \
&= 8027.50000~mathrm{J} \
KE &= boxed{ 8.03 times 10^{3}~mathrm{J} }
end{align*}
$$
KE = 8.03 times 10^{3}~mathrm{J}
$$
$$
begin{align*}
KE &= frac{1}{2}mv^{2} \
v^{2} &= frac{2KE}{m} \
implies v &= sqrt{frac{2KE}{m}} \
&= sqrt{frac{2 left( 7.8~mathrm{J} right)}{0.27~mathrm{kg}}} \
&= 7.60117~mathrm{m/s} \
v &= boxed{ 7.6~mathrm{m/s} }
end{align*}
$$
v = 7.6~mathrm{m/s}
$$
$$
begin{align*}
KE_text{i} &= frac{1}{2}mv_text{i}^{2} \
KE_text{f} &= frac{1}{2}mv_text{f}^{2} \
end{align*}
$$
$$
begin{align*}
W &= Delta KE = KE_text{f} – KE_text{i} \
&= frac{1}{2}mv_text{f}^{2} – frac{1}{2}mv_text{i}^{2} \
&= frac{1}{2}m left[v_text{f}^{2} – v_text{i}^{2} right] \
&= frac{1}{2} left( 73~mathrm{kg} right) left[ left( 7.5~mathrm{m/s} right)^{2} – 0 right] \
&= 2053.125~mathrm{J} \
W &= boxed{ 2100~mathrm{J} }
end{align*}
$$
W = 2100~mathrm{J}
$$
$$begin{aligned}
PE_text{gravity} &= mgh \
&= left( 0.14~mathrm{kg} right)left( 9.81~mathrm{m/s^{2}} right) left( 16~mathrm{m} right) \
&= 21.9744~mathrm{J} \
PE_text{gravity} &= boxed{ 22~mathrm{J} }
end{aligned}$$
$$
begin{aligned}
F &= kx \
implies k &= frac{F}{x} tag{1}
end{aligned}
$$
$$
begin{aligned}
PE &= frac{1}{2}kx^{2} \
&= frac{1}{2} left( frac{F}{x} right)x^{2} \
&= frac{1}{2}Fx \
&= frac{1}{2} left( 13~mathrm{N} right) left( 9.5 times 10^{-2}~mathrm{m} right) \
&= 0.6175~mathrm{J} \
PE &= boxed{ 0.62~mathrm{J} }
end{aligned}
$$
$$
F = kx
$$
We will also convert the value of x from $cm$ to $m$.
$$
x = 9.5cm = 0.095m
$$
$$
k = dfrac{F}{x} = dfrac{13N}{0.095m} = 136.84N/m
$$
$$
PE = dfrac{1}{2} kx^2 = dfrac{1}{2} (136.84N/m)(0.095m)^2
$$
$$
PE = 0.62J
$$
PE = 0.62J
$$