All Solutions
Page 204: Practice Problems
$$
begin{align*}
mgh &= PE_text{gravity} \
implies h &= left( frac{PE_text{gravity}}{g} right) frac{1}{m} tag{1} \
h &propto frac{1}{m}
end{align*}
$$
Since the product of $m$ and $h$ is constant, their relationship is inverse. If $m$ is increased, that means that $h$ would $textbf{decrease}$.
$$
begin{align*}
h &= left( frac{PE_text{gravity}}{g} right) frac{1}{m} \
&= left( frac{8.87 times 10^{5}~mathrm{J}}{9.81~mathrm{m/s^{2}}} right) frac{1}{91.0~mathrm{kg}} \
&= 993.60375~mathrm{m} \
h &= boxed{ 994~mathrm{m} }
end{align*}
$$
$$
begin{align*}
PE_text{gravity} &= mgh \
&= left( 0.25~mathrm{kg} right) left( 9.81~mathrm{m/s^{2}} right) left( 1.3~mathrm{m} right) \
&= 3.18825~mathrm{J} \
PE_text{gravity} &= boxed{3.2~mathrm{J}}
end{align*}
$$
PE_text{gravity} = 3.2~mathrm{J}
$$
$$
begin{align*}
PE_text{gravity} &= mgh \
implies m &= frac{PE_text{gravity}}{gh} \
&= frac{1800~mathrm{J}}{left( 1800~mathrm{J} right) left( 3.0~mathrm{m} right)} \
&= 61.16208~mathrm{kg} \
m &= boxed{ 61~mathrm{kg} }
end{align*}
$$
m = 61~mathrm{kg}
$$