Physics
Physics
1st Edition
Walker
ISBN: 9780133256925
Textbook solutions

All Solutions

Page 19: Practice Problems

Exercise 10
Solution 1
Solution 2
Step 1
1 of 2
The length of an $textit{E. Coli}$ bacterium is $5cdot 10^{-6} text{m}$. Table 1.4 shows that $1 text{km}=1000 text{m}$. To calculate the length in kilometers, we use a conversion factor, with the unit we want in the numerator, and the unit we want cancelled in the denominator. Therefore,

$$
begin{align*}
(5cdot 10^{-6} text{m})left(dfrac{1 text{km}}{1000 text{m}}right)=boxed{5cdot 10^{-9} text{km}}\
end{align*}
$$

Result
2 of 2
The length of an $textit{E. Coli}$ bacterium in kilometers is

                                 $boxed{5cdot 10^{-9} text{km}}$

Step 1
1 of 2
$$
(5times 10^{-6} mathrm{m})left(frac{1 mathrm{km}}{10^3 mathrm{m}}right)=5times 10^{-9} mathrm{km}
$$

So the length of $textit{E. coli}$ is $5times 10^{-9}$ km.

Result
2 of 2
$5times 10^{-9}$ km
Exercise 11
Solution 1
Solution 2
Step 1
1 of 3
$textbf{(a)}$      One kilodollar is 1000 dollars. Using the same principle as in the previous exercise to convert dollars to kilodollars, we have that the price of the minivan in kilodollars is

$$
begin{align*}
(33 200 text{dollars})left(dfrac{1 text{kilodollar}}{1000 text{dollars}}right)=boxed{33.2 text{kilodollars}}\
end{align*}
$$

Step 2
2 of 3
$textbf{(b)}$      One megadollar is 1 000 000 dollars, or, more elegantly, $10^{6} text{dollars}$. The price of the minivan in megadollars is

$$
begin{align*}
(33 200 text{dollars}left(dfrac{1 text{megadollar}}{1 000 000 text{dollars}}right)=boxed{0.0332 text{megadollars}}\
end{align*}
$$

Result
3 of 3
$textbf{(a)}$      The price in kilodollars is

                    $boxed{33.2 text{kilodollars}}$

$textbf{(b)}$      The price in megadollars is

                $boxed{0.0332 text{megadollars}}$

Step 1
1 of 3
$$
left(33200 {rm dollars}right)left(frac{1 {rm Kilo dollar}}{10^{3} text{dollar}}right)=33.2text{ killo dollar}
$$
Step 2
2 of 3
$$
left(33200text{ dollar}right)left(frac{1text{ mega dollar}}{10^{6}text{ dollar}}right)=33.2times10^{-3}text{ mega dollar}
$$
Result
3 of 3
See answers.
Exercise 12
Solution 1
Solution 2
Step 1
1 of 2
If a honeybee flaps its wings 200 times per second, then the time required for one wingbeat is

$$
begin{align*}
dfrac{1 text{s}}{200}=5cdot 10^{-3} text{s}\
end{align*}
$$

One millisecond is one thousandth of a second, $1 text{ms}=10^{-3} text{s}$, so the time required for one wingbeat expressed in milliseconds is

$$
begin{align*}
(5cdot 10^{-3} text{s})left(dfrac{1 text{ms}}{10^{-3} text{s}}right)=boxed{quad 5 text{ms}quad}\
end{align*}
$$

Result
2 of 2
The time required for one wingbeat is

                        $boxed{quad 5 text{ms}quad}$

Step 1
1 of 2
The time required for one wing bit is

$$
frac{left(1text{ s}right)}{200}=0.005text{ s}=left(0.005text{ s}right)left(frac{1text{ ms}}{10^{-3}text{ s}}right)=5text{ ms}
$$

Result
2 of 2
5 ms
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New