All Solutions
Page 187: Standardized Test Prep
$$
begin{align}
sum F_{x} &= 0 = W sin theta – T – F_text{f} \
sum F_{y} &= 0 = N – W cos theta
end{align}
$$
$$
begin{align*}
W sin theta &= T + F_text{f} \
N &= W cos theta
end{align*}
$$
We see that $textbf{C.}$ is the correct relationship.
$$
begin{align*}
W sin theta &= T + F_text{f} \
N &= W cos theta
end{align*}
$$
We find what happens to $N$, $F_text{f}$, and $T$ if $theta$ is increased.
$$
F_text{f} = mu N = mu W cos theta
$$
The relationships can be rewritten as
$$
begin{align*}
N &= W cos theta tag{1} \
F_text{f} &= mu W cos theta tag{2} \
T &= W sin theta – mu W cos theta tag{3}
end{align*}
$$
$$
begin{align*}
F &= ma
end{align*}
$$
The mass is the slope of the $F$ vs $a$ graph. The graph starts at the origin. At $a = 5~mathrm{m/s^{2}}$, $F = 3~mathrm{N}$. The slope is
$$
boxed{ mathrm{B.~} 0.6~mathrm{kg} }
$$
$$
begin{align*}
F_text{net} &= F – f \
implies f &= F – F_text{net} \
&= 4~mathrm{N} – 3~mathrm{N} \
f &= 1~mathrm{N}
end{align*}
$$
The frictional force is
$$
boxed{ mathrm{B.~} 1.0~mathrm{N} }
$$
$$
begin{align*}
F_text{net} &= F – f \
0 &= F – mu_text{k} mg \
implies mu_{k} &= frac{F}{mg} \
&= frac{12~mathrm{N}}{left( 1.6~mathrm{kg} right) left( 9.81~mathrm{m/s^{2}} right)} \
&= 0.76453 \
mu_{k} &= 0.76
end{align*}
$$
The approximate coefficient of friction is approximately
$$
boxed{ mathrm{C.~} 0.75~ }
$$
$$
begin{align*}
v_text{f}^{2} &= v_text{i}^{2} + 2a Delta x \
0 &= v_text{i}^{2} + 2a Delta x \
implies v_text{i}^{2} &= -2a Delta x \
v_text{i} &= sqrt{-2a} sqrt{Delta x} \
v_text{i} &propto sqrt{Delta x}
end{align*}
$$