Physics
Physics
1st Edition
Walker
ISBN: 9780133256925
Table of contents
Textbook solutions

All Solutions

Page 140: Lesson Check

Exercise 43
Step 1
1 of 2
$newcommand{tx}$[1]${text{#1}}$

#### Known

The expressions of the $x$ and $y$ components of the positions of a projectile are given by:

$$
begin{align*}
&x_f=x_i+left(v_i tx{cos} thetaright)t\
&y_f=y_i+left(v_i tx{sin} thetaright)t+frac{a_ycdot t^2}{2}, tx{with} a_y=-g=-9.81 frac{tx{m}}{tx{s}^2}
end{align*}
$$

The previous expressions constitute the parametric equation of a parabola, considering the time $t$ as a parameter. That is, the combined motion of a projectile on the $x$-axis and on the $y$-axis gives a parabolic trajectory.

This can be seen easily, if the $y$ component is solved in terms of the $x$ component, that is, isolate the parameter $t$ in one of the expressions and replace it in the other expression.

#### Conclusion

The trajectory that a projectile describes is a parabola.

Result
2 of 2
The trajectory that a projectile describes is a parabola.
Exercise 44
Step 1
1 of 2
$newcommand{tx}$[1]${text{#1}}$

#### Known

$$
begin{align*}
R=left(frac{v_i^2}{g}right) tx{sin}(2theta), tx{Range equation}
end{align*}
$$

Where $theta$ is the launch angle with respect to the $x$ axis.
#### Calculation

Therefore, for given an initial velocity $v_i$ and a value of gravity $g$, the range will only depend on the launch angle $theta$.

The above implies that the maximum launch range will be obtained when:

$$
begin{align*}
tx{sin}(2theta)=1implies theta=frac{pi}{4}=45^circ, tx{for} 0<theta<90^circ
end{align*}
$$

#### Conclusion

Therefore, we have:

$$
begin{align*}
boxed{R_{tx{max}}=frac{v_i^2}{g}}
end{align*}
$$

Result
2 of 2
$$
begin{align*}
boxed{R_{text{max}}=frac{v_i^2}{g}}
end{align*}
$$
Exercise 45
Step 1
1 of 2
$newcommand{tx}$[1]${text{#1}}$

#### Known

Considering the acceleration of gravity $g$ downwards and with constant magnitude and taking into account that for a projectile (the thrown ball and the dropped ball) the horizontal and vertical movements are independent. We come to the conclusion that the acceleration is both cases is the same.

#### Conclusion

The acceleration in both cases is the same.

Result
2 of 2
The acceleration in both cases is the same.
Exercise 46
Step 1
1 of 2
$newcommand{tx}$[1]${text{#1}}$

#### Known

The components of the initial velocity $vec{v}_i$ of a projectile launched at an angle $theta$ with respect to the horizontal, are given by:

$$
begin{align}
v_{x,i}=v_i tx{cos}(theta)hspace{0.5cm}tx{and}hspace{0.5cm}v_{y,i}=v_i tx{sin}(theta)
end{align}
$$

Flight time is the time for the projectile to fall since it was launched. In the case that the projectile falls to the same horizontal height as where it was launched, this time is given by:

$$
begin{align}
t_v=frac{2v_i tx{sin}(theta)}{g}
end{align}
$$

Therefore, from figure 4.30, we have:

For the same initial speed in all cases.

a) The projectile $C$ has the largest horizontal component of initial velocity (see expression (1)). Since it is the one with the smallest launch angle $theta$ and therefore the value of $tx{cos}(theta)$ is greater than the rest.

Therefore, projectile $A$ has the smallest horizontal component of initial velocity, followed by projectile $B$ and the largest for projectile $C$.

b) From the figure, it can be seen that projectile $A$ takes more time in the air (flight time), since it reaches a higher height that the rest. This, taking into account that the vertical movement of a projectile is independent of its horizontal movement (no matter how large its initial horizontal velocity is).

Therefore, projectile $C$ has the smallest time of flight, followed by $B$ and the longest flight time for projectile $A$. This can also be seen from expression (2).

#### Conclusion

$$
begin{align*}
tx{a}) boxed{A<B<C}hspace{1cm} tx{b}) boxed{C<B<A}
end{align*}
$$

Result
2 of 2
$$
begin{align*}
text{a}) boxed{A<B<C}hspace{1cm} text{b}) boxed{C<B<A}
end{align*}
$$
Exercise 47
Step 1
1 of 2
$newcommand{tx}$[1]${text{#1}}$

#### Known

Range equation.

$$
begin{align*}
R=left(frac{v_i^2}{g}right) tx{sin}(2theta)
end{align*}
$$

Where $theta$ is the launch angle with respect to the $x$ axis. Therefore:

$$
begin{align}
R_{tx{max}}=frac{v_i^2}{g}, tx{for} theta=45^circ
end{align}
$$

#### Calculation

Givens: From Example 4.12: $v_i=13.5 frac{tx{m}}{tx{s}}$, $g=9.81 frac{tx{m}}{tx{s}^2}$.

From (1) we have:

$$
begin{align*}
R_{tx{max}}=frac{left(13.5 frac{tx{m}}{tx{s}}right)^2}{9.81 frac{tx{m}}{tx{s}^2}}=18.59 tx{m}
end{align*}
$$

#### Conclusion

If the golf ball was thrown at an angle of $45^circ$ to the horizontal, it would travel a horizontal distance of $18.59 tx{m}$.

Result
2 of 2
$$
boxed{R_{text{max}}=18.59 text{m}}
$$
Exercise 48
Step 1
1 of 3
In this problem, a snowball is thrown with an initial $x$ velocity of $v_text{x, i} = 7.5~mathrm{m/s^{2}}$ and initial $y$ velocity of $v_text{y, i} = 8.2~mathrm{m/s}$. We calculate the time required for the snowball to reach the highest point. We use $g = 9.81~mathrm{s}$.
Step 2
2 of 3
The relevant velocity is the $y$ component. At the highest point, $v_text{y, f} = 0$. We have

$$
begin{align*}
v_text{y, f} &= v_text{y, i} – gt \
implies t &= frac{v_text{y, i} – v_text{y, f}}{g} \
&= frac{8.2~mathrm{m/s} – 0}{9.81~mathrm{s}} \
&= 0.83588~mathrm{s} \
t &= boxed{ 0.84~mathrm{s} }
end{align*}
$$

Result
3 of 3
$$
t = 0.84~mathrm{s}
$$
Exercise 49
Step 1
1 of 5
$newcommand{tx}$[1]${text{#1}}$

#### Known

The horizontal and vertical position ($x, y$) of a projectile as a function of time are given by:

$$
begin{align}
&x_f=x_i+left(v_i tx{cos} thetaright)t\
&y_f=y_i+left(v_i tx{sin} thetaright)t+frac{a_ycdot t^2}{2}, a_y=-g
end{align}
$$

#### Calculation

Givens: $v_i=18 frac{tx{m}}{tx{s}}$, $theta=35^circ$, $x_i=0 tx{m}$, $y_i=0 tx{m}$, $g=9.81 frac{tx{m}}{tx{s}^2}$

From (1) and (2) we have:

a) At $t=0.5 tx{s}$

$$
begin{align*}
&x=x_f=0 tx{m}+left(18 frac{tx{m}}{tx{s}}cdot tx{cos}(35^circ)right)(0.5 tx{s})=7.37 tx{m}\
&y=y_f=0 tx{m}+left(18 frac{tx{m}}{tx{s}}cdot tx{sin}(35^circ)right)(0.5 tx{s})-frac{left(9.81 frac{tx{m}}{tx{s}^2}right)(0.5 tx{s})^2}{2}=3.94 tx{m}
end{align*}
$$

At $t=1.0 tx{s}$

$$
begin{align*}
&x=x_f=0 tx{m}+left(18 frac{tx{m}}{tx{s}}cdot tx{cos}(35^circ)right)(1.0 tx{s})=14.74 tx{m}\
&y=y_f=0 tx{m}+left(18 frac{tx{m}}{tx{s}}cdot tx{sin}(35^circ)right)(1.0 tx{s})-frac{left(9.81 frac{tx{m}}{tx{s}^2}right)(1.0 tx{s})^2}{2}=5.42 tx{m}
end{align*}
$$

At $t=1.5 tx{s}$

$$
begin{align*}
&x=x_f=0 tx{m}+left(18 frac{tx{m}}{tx{s}}cdot tx{cos}(35^circ)right)(1.5 tx{s})=22.12 tx{m}\
&y=y_f=0 tx{m}+left(18 frac{tx{m}}{tx{s}}cdot tx{sin}(35^circ)right)(1.5 tx{s})-frac{left(9.81 frac{tx{m}}{tx{s}^2}right)(1.5 tx{s})^2}{2}=4.45 tx{m}
end{align*}
$$

Step 2
2 of 5
$newcommand{tx}$[1]${text{#1}}$

At $t=2.0 tx{s}$

$$
begin{align*}
&x=x_f=0 tx{m}+left(18 frac{tx{m}}{tx{s}}cdot tx{cos}(35^circ)right)(2.0 tx{s})=29.49 tx{m}\
&y=y_f=0 tx{m}+left(18 frac{tx{m}}{tx{s}}cdot tx{sin}(35^circ)right)(2.0 tx{s})-frac{left(9.81 frac{tx{m}}{tx{s}^2}right)(2.0 tx{s})^2}{2}=1.03 tx{m}
end{align*}
$$

b) The figure:

Step 3
3 of 5
Exercise scan
Step 4
4 of 5
$newcommand{tx}$[1]${text{#1}}$

#### Conclusion

a) At $0.5 tx{s}$, $x=7.37 tx{m}$ and $y=3.94 tx{m}$. At $1.0 tx{s}$, $x=14.74 tx{m}$ and $y=5.42 tx{m}$. At $1.5 tx{s}$, $x=22.12 tx{m}$ and $y=4.45 tx{m}$. At $2.0 tx{s}$, $x=29.49 tx{m}$ and $y=1.03 tx{m}$.

Result
5 of 5
a) At $0.5 text{s}$, $x=7.37 text{m}$ and $y=3.94 text{m}$. At $1.0 text{s}$, $x=14.74 text{m}$ and $y=5.42 text{m}$. At $1.5 text{s}$, $x=22.12 text{m}$ and $y=4.45 text{m}$. At $2.0 text{s}$, $x=29.49 text{m}$ and $y=1.03 text{m}$.
Exercise 50
Step 1
1 of 2
$newcommand{tx}$[1]${text{#1}}$

#### Known

For a vector $vec{v}$ with $v_x$ and $v_y$, the speed $v$ (magnitude $vec{v}$) is given by:

$$
begin{align}
v=sqrt{v^2_x+v^2_y}
end{align}
$$

#### Calculation

Givens: $v_{x,i}=v_{x,f}=1.85 frac{tx{m}}{tx{s}}$, because the motion of a projectile on the $x$ axis is independent of the motion on the $y$ axis. $v_f=0 tx{m}$, $y_i=3 tx{m}$, $v_{y,i}=0 frac{tx{m}}{tx{s}}$, $g=9.81 frac{tx{m}}{tx{s}^2}$.

Calculating the $y$ component of the velocity at the instant before entering the water.

$$
begin{align*}
v^2_{y,f}&=v^2_{y,i}+2a_yleft(y_f-y_iright), tx{with} a_y=-g\
&=left(0 frac{tx{m}}{tx{s}}right)^2-2left(9.81 frac{tx{m}}{tx{s}^2}right)left(0 tx{m}-3 tx{m}right)\
v^2_{y,f}&=58.86 frac{tx{m}^2}{tx{s}^2}implies v_{y,f}=-7.67 frac{tx{m}}{tx{s}},
end{align*}
$$

Considering the downward direction as negative.

Therefore, from (1) we have:

$$
begin{align*}
&v=sqrt{(v_{x,f})^2+(v_{y,f})^2}=sqrt{left(1.85 frac{tx{m}}{tx{s}}right)^2 +left(-7.67 frac{tx{m}}{tx{s}}right)^2}\
&boxed{v=7.89 frac{tx{m}}{tx{s}}}
end{align*}
$$

#### Conclusion

The divers speed is $7.89 frac{tx{m}}{tx{s}}$.

Result
2 of 2
The divers speed is $7.89 frac{text{m}}{text{s}}$.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Introduction to Physics
Section 1.1: Physics and the Scientific Method
Section 1.2: Physics and Society
Section 1.3: Units and Dimensions
Section 1.4: Basic Math for Physics
Page 38: Assessment
Page 41: Standardized Test Prep
Chapter 2: Introduction to Motion
Section 2.1: Describing Motion
Section 2.2: Speed and Velocity
Section 2.3: Position-Time Graphs
Section 2.4: Equation of Motion
Page 66: Assessment
Page 71: Standardized Test Prep
Page 45: Practice Problems
Page 47: Practice Problems
Page 47: Lesson Check
Page 49: Practice Problems
Page 52: Practice Problems
Page 53: Lesson Check
Page 56: Practice Problems
Page 57: Lesson Check
Page 59: Practice Problems
Page 60: Practice Problems
Page 62: Practice Problems
Page 62: Lesson Check
Chapter 3: Acceleration and Acceleration Motion
Section 3.1: Acceleration
Section 3.2: Motion with Constant Acceleration
Section 3.3: Position-Time Graphs for Constant Acceleration
Section 3.4: Free Fall
Page 105: Assessment
Page 111: Standardized Test Prep
Chapter 4: Motion in Two Dimensions
Section 4.1: Vectors in Physics
Section 4.2: Adding and Subtracting Vectors
Section 4.3: Relative Motion
Section 4.4: Projectile Motion
Page 144: Assessment
Page 149: Standardized Test Prep
Chapter 5: Newton’s Laws of Motion
Section 5.1: Newton’s Laws of Motion
Section 5.2: Applying Newton’s Laws
Section 5.3: Friction
Page 180: Assessment
Page 187: Standardized Test Prep
Chapter 6: Work and Energy
Section 6.1: Work
Section 6.2: Work and Energy
Section 6.3: Conservation of Energy
Section 6.4: Power
Page 220: Assessment
Page 227: Standardized Test Prep
Page 191: Practice Problems
Page 193: Practice Problems
Page 196: Lesson Check
Page 196: Practice Problems
Page 199: Practice Problems
Page 201: Practice Problems
Page 203: Practice Problems
Page 204: Practice Problems
Page 205: Practice Problems
Page 206: Lesson Check
Page 209: Practice Problems
Page 211: Lesson Check
Page 213: Practice Problems
Page 214: Practice Problems
Page 215: Practice Problems
Page 216: Lesson Check
Chapter 7: Linear Momentum and Collisions
Section 7.1: Momentum
Section 7.2: Impulse
Section 7.3: Conservation of Momentum
Section 7.4: Collisions
Page 260: Assessment
Page 265: Standardized Test Prep
Chapter 8: Rotational Motion and Equilibrium
Section 8.1: Describing Angular Motion
Section 8.2: Rolling Motion and the Moment of Inertia
Section 8.3: Torque
Section 8.4: Static Equilibrium
Page 300: Assessment
Page 305: Standardized Test Prep
Page 269: Practice Problems
Page 271: Practice Problems
Page 272: Practice Problems
Page 275: Practice Problems
Page 275: Lesson Check
Page 277: Practice Problems
Page 280: Lesson Check
Page 284: Practice Problems
Page 286: Practice Problems
Page 287: Practice Problems
Page 289: Lesson Check
Page 294: Practice Problems
Page 295: Practice Problems
Page 296: Lesson Check
Chapter 9: Gravity and Circular Motion
Section 9.1: Newton’s Law of Universal Gravity
Section 9.2: Applications of Gravity
Section 9.3: Circular Motion
Section 9.4: Planetary Motion and Orbits
Page 336: Assessment
Page 341: Standardized Test Prep
Chapter 10: Temperature and Heat
Section 10.1: Temperature, Energy, and Heat
Section 10.2: Thermal Expansion and Energy Transfer
Section 10.3: Heat Capacity
Section 10.4: Phase Changes and Latent Heat
Page 378: Assessment
Page 383: Standardized Test Prep
Chapter 11: Thermodynamics
Section 11.1: The First Law of Thermodynamics
Section 11.2: Thermal Processes
Section 11.3: The Second and Third Laws of Thermodynamics
Page 410: Assessment
Page 413: Standardized Test Prep
Chapter 12: Gases, Liquids, and Solids
Section 12.1: Gases
Section 12.2: Fluids at Rest
Section 12.3: Fluids in Motion
Section 12.4: Solids
Page 446: Assessment
Page 451: Standardized Test Prep
Chapter 13: Oscillations and Waves
Section 13.1: Oscillations and Periodic Motion
Section 13.2: The Pendulum
Section 13.3: Waves and Wave Properties
Section 13.4: Interacting Waves
Page 486: Assessment
Page 491: Standardized Test Prep
Chapter 14: Sound
Section 14.1: Sound Waves and Beats
Section 14.2: Standing Sound Waves
Section 14.3: The Doppler Effect
Section 14.4: Human Perception of Sound
Page 523: Assessment
Page 527: Standardized Test Prep
Page 495: Practice Problems
Page 496: Practice Problems
Page 500: Practice Problems
Page 501: Lesson Check
Page 503: Practice Problems
Page 504: Practice Problems
Page 506: Practice Problems
Page 506: Lesson Check
Page 510: Practice Problems
Page 511: Practice Problems
Page 512: Lesson Check
Page 514: Practice Problems
Page 516: Practice Problems
Page 517: Practice Problems
Page 519: Lesson Check
Chapter 15: The Properties of Lights
Section 15.1: The Nature of Light
Section 15.2: Color and the Electromagnetic Spectrum
Section 15.3: Polarization and Scattering of Light
Page 557: Assessment
Page 563: Standardized Test Prep
Chapter 16: Reflection and Mirrors
Section 16.1: The Reflection of Light
Section 16.2: Plane Mirrors
Section 16.3: Curved Mirrors
Page 590: Assessment
Page 595: Standardized Test Prep
Chapter 17: Refraction and Lenses
Section 17.1: Refraction
Section 17.2: Applications of Refraction
Section 17.3: Lenses
Section 17.4: Applications of Lenses
Page 629: Assessment
Page 635: Standardized Test Prep
Chapter 18: Interference and Diffraction
Section 18.1: Interference
Section 18.2: Interference in Thin Films
Section 18.3: Diffraction
Section 18.4: Diffraction Gratings
Page 668: Assessment
Page 673: Standardized Test Prep
Chapter 19: Electric Charges and Forces
Section 19.1: Electric Charge
Section 19.2: Electric Force
Section 19.3: Combining Electric Forces
Page 698: Assessment
Page 703: Standardized Test Prep
Chapter 20: Electric Fields and Electric Energy
Section 20.1: The Electric Field
Section 20.2: Electric Potential Energy and Electric Potential
Section 20.3: Capacitance and Energy Storage
Page 738: Assessment
Page 743: Standardized Test Prep
Chapter 21: Electric Current and Electric Circuits
Section 21.1: Electric Current, Resistance, and Semiconductors
Section 21.2: Electric Circuits
Section 21.3: Power and Energy in Electric Circuits
Page 775: Assessment
Page 781: Standardized Test Prep
Chapter 22: Magnetism and Magnetic Fields
Section 22.1: Magnets and Magnetic Fields
Section 22.2: Magnetism and Electric Currents
Section 22.3: The Magnetic Force
Page 810: Assessment
Page 815: Standardized Test Prep
Chapter 23: Electromagnetic Induction
Section 23.1: Electricity from Magnetism
Section 23.2: Electric Generators and Motors
Section 23.3: AC Circuits and Transformers
Page 844: Assessment
Page 849: Standardized Test Prep
Chapter 24: Quantum Physics
Section 24.1: Quantized Energy and Photons
Section 24.2: Wave-Particle Duality
Section 24.3: The Heisenberg Uncertainty Principle
Page 876: Assessment
Page 881: Standardized Test Prep
Chapter 26: Nuclear Physics
Section 26.1: The Nucleus
Section 26.2: Radioactivity
Section 26.3: Applications of Nuclear Physics
Section 26.4: Fundamental Forces and Elementary Particles
Page 944: Assessment
Page 947: Standardized Test Prep