All Solutions
Page 101: Lesson Check
$$
boxed{ v_text{f} = -4.5~mathrm{m/s} }
$$
v_text{f} = -4.5~mathrm{m/s}
$$
tt{using the Velocity-Position equation $v_{f}^2=v_{i}^2+2aDelta x$ we can determine the velocity of the shell when it hit the rocks, we will choose the coordinate system origin at the point where the motion originates and the positive direction downwards $Rightarrow a=+g,Delta x=+14$:}
$$
$$
begin{align*}
v_{f}^2&=0+2gDelta x\
v_f&=sqrt{2g Delta x}\
&=sqrt{2*(9.81frac{m}{s^2})*(14m)}\
&=boxed{textcolor{#4257b2}{16.6frac{m}{s}}}
end{align*}
$$
tt{$16.6frac{m}{s}$}
$$
$$
begin{align*}
v &= v_text{i} + at \
v &= v_text{i} – gt tag{1}
end{align*}
$$
For this part, we substitute $t = 2.0~mathrm{s}$ to equation (1).
$$
begin{align*}
v &= v_text{i} – gt \
&= +28~mathrm{m/s} – left( 9.81~mathrm{m/s^{2}} right) left( 2.0~mathrm{s} right) \
&= +8.38~mathrm{m/s} \
v &= boxed{ +8.4~mathrm{m/s} }
end{align*}
$$
The positive sign tells us that the object is moving upwards.
For this part, we substitute $t = 3.0~mathrm{s}$ to equation (1).
$$
begin{align*}
v &= v_text{i} – gt \
&= +28~mathrm{m/s} – left( 9.81~mathrm{m/s^{2}} right) left( 3.0~mathrm{s} right) \
&= -1.43~mathrm{m/s} \
v &= boxed{ -1.4~mathrm{m/s} }
end{align*}
$$
The negative sign tells us that the object is moving downwards.
item [(a)] $v = +8.4~mathrm{m/s}$
item [(b)] $v = -1.4~mathrm{m/s}$
end{enumerate}
$$
v_{f} = v_{i} + at
$$
$$
a = -g = -9.81m/s^2
$$
$$
v_{f} = 28m/s + (-9.81m/s^2)(2.0s) = 8.4m/s
$$
since the result is positive, the direction of the motion is upward.
$$
v_{f} = 28m/s + (-9.81m/s^2)(3.0s) = -1.43m/s
$$
since the result is negative, the direction of the motion is downward.
b. $speed = 1.43m/s$, downward direction
$$
begin{align*}
x &= x_text{i} + v_text{i}t + frac{1}{2}at^{2} tag{1}
end{align*}
$$
In this situation, since acceleration due to gravity is downwards, $a = -9.81~mathrm{m/s^{2}}$.
$$
begin{align*}
x_{B} &= x_text{i, B} + v_text{i, B}t + frac{1}{2}at^{2} \
&= 3.0~mathrm{m} + 0 – frac{9.81~mathrm{m/s^{2}}}{2}t^{2} \
x_{B} &= boxed{ 3.0~mathrm{m} – left( 4.905~mathrm{m/s^{2}} right)t^{2} }
end{align*}
$$
$$
begin{align*}
x_{M} &= x_text{i, M} + v_text{i, M}t + frac{1}{2}at^{2} \
&= 1.0~mathrm{m} + left( 4.2~mathrm{m/s} right)t – frac{9.81~mathrm{m/s^{2}}}{2}t^{2} \
x_{M} &= boxed{ 1.0~mathrm{m} + left( 4.2~mathrm{m/s} right)t – left( 4.905~mathrm{m/s^{2}} right)t^{2} }
end{align*}
$$