All Solutions
Page 100: Practice Problems
$$
begin{align*}
v_text{f}^{2} &= v_text{i}^{2} + 2aDelta x \
v_text{f} &= sqrt{v_text{i}^{2} + 2aDelta x} \
&= sqrt{ 0 + 2 left( 9.81~mathrm{m/s^{2}} right) left( 3.00~mathrm{m} right) } \
&= 7.67203~mathrm{m/s} \
v_text{f} &= boxed{ 7.67~mathrm{m/s} }
end{align*}
$$
This implies that the same final speed can be calculated in different approaches.
$$
begin{align*}
v_text{f}^{2} &= v_text{i}^{2} + 2aDelta x \
v_text{f} &= sqrt{v_text{i}^{2} + 2aDelta x} \
&= sqrt{ 0 + 2 left( 9.81~mathrm{m/s^{2}} right) left( 10.0~mathrm{m} right) } \
&= 14.00714~mathrm{m/s} \
v_text{f} &= boxed{ 14.0~mathrm{m/s} }
end{align*}
$$
v_text{f} = 14.0~mathrm{m/s}
$$
$$
begin{align*}
v_text{f}^{2} &= v_text{i}^{2} + 2aDelta x \
v_text{f} &= sqrt{v_text{i}^{2} + 2aDelta x} \
&= sqrt{0 + 2gH } \
&= sqrt{2g} sqrt{H} \
v_text{f} &propto sqrt{H}
end{align*}
$$
We see that the landing speed is proportional to the square root of the dropping height. Since the dropping height is doubled, the speed must be scaled by a factor of $sqrt{(2)}$. Hence, the landing speed of the package dropped from height $2H$ is
$$
boxed{ sqrt{2} V }
$$
sqrt{2} V
$$
$$
begin{align*}
h &= v_text{i}t + frac{1}{2}at^{2} \
&= 0 + frac{g}{2}t^{2} \
&= frac{9.81~mathrm{m/s^{2}}}{2} left( 1.5~mathrm{s} right)^{2} \
&= 11.03625~mathrm{m} \
h &= boxed{ 11~mathrm{m} }
end{align*}
$$
h = 11~mathrm{m}
$$