Physics
Physics
1st Edition
Walker
ISBN: 9780133256925
Textbook solutions

All Solutions

Page 100: Practice Problems

Exercise 51
Step 1
1 of 2
In this problem, we try to solve part (b) of Guided Example 3.12 using the equation $v_text{f}^{2} = v_text{i}^{2} + 2aDelta x$. It is given that $v_text{i} = 0$, $x_text{i} = 0$, $x = 3.00~mathrm{m}$, and $a = 9.81~mathrm{m/s^{2}}$. We confirm that $v_text{f} = 7.67~mathrm{m/s}$.
Step 2
2 of 2
From the given, $Delta x = x – x_text{i} = 3.00~mathrm{m}$. Using the given equation, we have

$$
begin{align*}
v_text{f}^{2} &= v_text{i}^{2} + 2aDelta x \
v_text{f} &= sqrt{v_text{i}^{2} + 2aDelta x} \
&= sqrt{ 0 + 2 left( 9.81~mathrm{m/s^{2}} right) left( 3.00~mathrm{m} right) } \
&= 7.67203~mathrm{m/s} \
v_text{f} &= boxed{ 7.67~mathrm{m/s} }
end{align*}
$$

This implies that the same final speed can be calculated in different approaches.

Exercise 52
Step 1
1 of 3
In this problem, we may use the results from the previous problem. However, we are now given that $x = 10.0~mathrm{m}$. The other quantities are $v_text{i} = 0$, $x_text{i} = 0$, and $a = 9.81~mathrm{m/s^{2}}$. We find $v_text{f}$.
Step 2
2 of 3
From the given, $Delta x = x – x_text{i} = 10.0~mathrm{m}$. Using the given equation, we have

$$
begin{align*}
v_text{f}^{2} &= v_text{i}^{2} + 2aDelta x \
v_text{f} &= sqrt{v_text{i}^{2} + 2aDelta x} \
&= sqrt{ 0 + 2 left( 9.81~mathrm{m/s^{2}} right) left( 10.0~mathrm{m} right) } \
&= 14.00714~mathrm{m/s} \
v_text{f} &= boxed{ 14.0~mathrm{m/s} }
end{align*}
$$

Result
3 of 3
$$
v_text{f} = 14.0~mathrm{m/s}
$$
Exercise 53
Step 1
1 of 3
In this problem, a package dropped from height $H$ lands with speed $V$. We calculate what happens to the landing speed if the package is dropped from height $2H$.
Step 2
2 of 3
We use the equation $v_text{f}^{2} = v_text{i}^{2} + 2aDelta x$ with $v_text{i} = 0$ and $Delta x = H$. We have

$$
begin{align*}
v_text{f}^{2} &= v_text{i}^{2} + 2aDelta x \
v_text{f} &= sqrt{v_text{i}^{2} + 2aDelta x} \
&= sqrt{0 + 2gH } \
&= sqrt{2g} sqrt{H} \
v_text{f} &propto sqrt{H}
end{align*}
$$

We see that the landing speed is proportional to the square root of the dropping height. Since the dropping height is doubled, the speed must be scaled by a factor of $sqrt{(2)}$. Hence, the landing speed of the package dropped from height $2H$ is
$$
boxed{ sqrt{2} V }
$$

Result
3 of 3
$$
sqrt{2} V
$$
Exercise 54
Step 1
1 of 3
In this problem, a group of students stepped off a bridge and hit the riven after time $t = 1.5~mathrm{s}$. We find the height of the bridge. We use $g = 9.81~mathrm{m/s^{2}}$
Step 2
2 of 3
Since the students stepped off, $v_text{i} = 0$. We have

$$
begin{align*}
h &= v_text{i}t + frac{1}{2}at^{2} \
&= 0 + frac{g}{2}t^{2} \
&= frac{9.81~mathrm{m/s^{2}}}{2} left( 1.5~mathrm{s} right)^{2} \
&= 11.03625~mathrm{m} \
h &= boxed{ 11~mathrm{m} }
end{align*}
$$

Result
3 of 3
$$
h = 11~mathrm{m}
$$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New