Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Textbook solutions

All Solutions

Page 97: Practice Problems

Exercise 15
Step 1
1 of 2
Suppose a scale in a supermarket shows the amount of force acting on it. If we place a watermelon on it, we know that it will act by gravity, which means that it is necessary to calculate the force of gravity $F_g$ by which the watermelon acts on the scale.

$$
begin{align*}
m&=4 mathrm{kg} \
g&=9.8 mathrm{m/s^2} \
F_g&=?\
\
F_g&=mcdot g \
&=4 mathrm{kg} cdot 9.8 mathrm{m/s^2} \
&=39.2 mathrm{N}
end{align*}
$$

Result
2 of 2
Reading on the scale is $39.2 mathrm{N}$.
Exercise 16
Step 1
1 of 2
Given:

The known values are:

$$
begin{align*}
a&=0.8 mathrm{m/s^2} \
m&=27.2 mathrm{kg} \
F&=?
end{align*}
$$

We calculate force according to Newton’s second law, which reads:

$$
begin{align*}
F&=mcdot a \
\
F&=mcdot a \
&=27.2 mathrm{kg}cdot 0.8 mathrm{m/s^2} \
&=21.76 mathrm{N}
end{align*}
$$

Result
2 of 2
Force needed is $F=21.76 mathrm{N}$.
Exercise 17
Step 1
1 of 2
For positive direction we choose direction toward Reiko.

Known:

$$
begin{align*}
F_T&=-16 mathrm{N} tag{Force by which Taru acts on rope} \
a&=-1.25 mathrm{m/s^2} \
m_r&=0.75 mathrm{kg} tag{mass of rope} \
F_{net}&=? \
F_R&=? tag{Force by which Reiko acts on rope}
end{align*}
$$

To calculate $F_R$ first we must calculate net force $F_{net}$. According to second Newton’s law we have:

$$
begin{align*}
F&=mcdot a \
\
F_{net}&=m_r cdot a \
&=0.75 mathrm{kg}cdot 1.25 mathrm{m/s^2} \
&=0.9375 mathrm{N}\
\
F_{net}&=F_R+F_T \
F_R&=F_{net}-F_T \
&=0.9375 mathrm{N}+16 mathrm{N} \
&=boxed{16.9375 mathrm{N}}
end{align*}
$$

Result
2 of 2
Force by which Reiko acts upon a rope is $F_R=16.9375 mathrm{N}$.
Exercise 18
Solution 1
Solution 2
Step 1
1 of 5
1.

Bottom scale:$\$
Identify the sphere as the system and up as positive.$

$The system is not accelerating, so$

F_${mathrm{n}mathrm{e}mathrm{t}}$=ma =0$\\
Observing the forces acting,\\$F_${mathrm{n}mathrm{e}mathrm{t}}$=         F_${mathrm{s}mathrm{c}mathrm{a}mathrm{l}mathrm{e} mathrm{o}mathrm{n} mathrm{s}mathrm{p}mathrm{h}mathrm{e}mathrm{r}mathrm{e}}$ -F_${mathrm{E}mathrm{a}mathrm{r}mathrm{t}mathrm{h}’ mathrm{s} mathrm{m}mathrm{a}mathrm{s}mathrm{s} mathrm{o}mathrm{n} mathrm{s}mathrm{p}mathrm{h}mathrm{e}mathrm{r}mathrm{e}}$         =0$

So:

Step 2
2 of 5
$F_{mathrm{s}mathrm{c}mathrm{a}mathrm{l}mathrm{e} mathrm{o}mathrm{n} mathrm{s}mathrm{p}mathrm{h}mathrm{e}mathrm{r}mathrm{e}} =F_{mathrm{E}mathrm{a}mathrm{r}mathrm{t}mathrm{h}’ mathrm{s} mathrm{m}mathrm{a}mathrm{s}mathrm{s} mathrm{o}mathrm{n} mathrm{s}mathrm{p}mathrm{h}mathrm{e}mathrm{r}mathrm{e}} =m_{mathrm{s}mathrm{p}mathrm{h}mathrm{e}mathrm{r}mathrm{e}}g$=

$=(3.0mathrm{k}mathrm{g})(9.80mathrm{m}lmathrm{s}^{2})=29mathrm{N}$

Step 3
3 of 5
2.

Top scale:

Identify the block as the system and up as positive.

The system is not accelerating, so$\\$$F_${mathrm{n}mathrm{e}mathrm{t}}$=ma =0$\\
Observing the forces acting,\\$F_${mathrm{n}mathrm{e}mathrm{t}}$=F_${mathrm{t}mathrm{o}mathrm{p} mathrm{s}mathrm{c}mathrm{a}mathrm{l}mathrm{e} mathrm{o}mathrm{n} mathrm{b}mathrm{l}mathrm{o}mathrm{c}mathrm{k}}$ -F_${mathrm{b}mathrm{o}mathrm{t}mathrm{t}mathrm{o}mathrm{m} mathrm{s}mathrm{c}mathrm{a}mathrm{l}mathrm{e} mathrm{o}mathrm{n} mathrm{b}mathrm{l}mathrm{o}mathrm{c}mathrm{k}}$ -F_${mathrm{E}mathrm{a}mathrm{r}mathrm{t}mathrm{h}’ mathrm{s} mathrm{m}mathrm{a}mathrm{s}mathrm{s} mathrm{o}mathrm{n} mathrm{b}mathrm{l}mathrm{o}mathrm{c}mathrm{k}}$=0$

Step 4
4 of 5
$F_{mathrm{t}mathrm{o}mathrm{p} mathrm{s}mathrm{c}mathrm{a}mathrm{l}mathrm{e} mathrm{o}mathrm{n} mathrm{b}mathrm{l}mathrm{o}mathrm{c}mathrm{k}} =F_{mathrm{b}mathrm{o}mathrm{t}mathrm{t}mathrm{o}mathrm{m} mathrm{s}mathrm{c}mathrm{a}mathrm{l}mathrm{e} mathrm{o}mathrm{n} mathrm{b}mathrm{l}mathrm{o}mathrm{c}mathrm{k}} +F_{mathrm{E}mathrm{a}mathrm{r}mathrm{t}mathrm{h}’ mathrm{s} mathrm{m}mathrm{a}mathrm{s}mathrm{s} mathrm{o}mathrm{n} mathrm{b}mathrm{l}mathrm{o}mathrm{c}mathrm{k}}=\\$$=F_${mathrm{b}mathrm{o}mathrm{t}mathrm{t}mathrm{o}mathrm{m} mathrm{s}mathrm{c}mathrm{a}mathrm{l}mathrm{e} mathrm{o}mathrm{n} mathrm{b}mathrm{l}mathrm{o}mathrm{c}mathrm{k}}$ + m_${mathrm{b}1mathrm{o}mathrm{c}mathrm{k}}$g =

=29$mathrm{N}$+(1.2$kg$) ($9.80$$mathrm{m}$/$mathrm{s}$^{2})=

=41$$mathrm{N}$

Result
5 of 5
29 N

41N

Step 1
1 of 8
**Given information**

– Sphere mass: $m_s=3mathrm{~kg}$
– Block mass: $m_b=1.2mathrm{~kg}$

**Objective**

– Find the readings on the scale.

Step 2
2 of 8
**Approach**

The readings on the scale represent the force that is acting on the scale, produced by the objects hanging on it. We can find these readings by considering the Newton’s second law.

Newton’s second law (In one dimension) states:

$$begin{align}
mcdot a=F_1+F_2+F_3+…
end{align}$$

Where $m$ is the mass of the object, $a$ is the acceleration of the object and $F_{1,2,3,…}$ are the forces acting on that object. Since our objects are not moving (they are in equilibrium), they are not accelerating so: $a=0$.

Step 3
3 of 8
Applying $a=0$ in the equation $(1)$, we get:
$$begin{align}
mcdot a&=F_1+F_2+F_3+… nonumber
\0&=F_1+F_2+F_3+…
end{align}$$

Only two forces are acting on these two objects, one is due to gravity $F_g=mcdot g$ and the other one is tension force due to hanging $T$. Gravity force $F_g$ is acting on the object downwards and tension for is acting on it upwards, so they need to have different sign.

Step 4
4 of 8
Using formula $(2)$ for our forces $F_g$ and $T$, we get:
$$begin{align}
\0&=F_1+F_2+F_3+… nonumber
\0&=-F_g+T
end{align}$$

We used the minus sign in front of $F_g$ since it’s pointing downwards. We could have also used $+$ in front of $F_g$ and $-$ in front of $T$, it wouldn’t change the result, as that only changes our coordinate system (What we choose to be positive).

Step 5
5 of 8
Now the crucial part is to notice that the scale reads the force $T$, since by Newton’s third law, object that is hanging is acting on the scale with the same intensity as the scale is acting on the object. And the force acting on the scale is the reading.

Now, using formula $(4)$, we get:

$$begin{align}
T=F_g=mcdot g
end{align}$$

Now using this formula, we can simply calculate the readings.

Step 6
6 of 8
$mathrm{underline {Calculating~for~the~lower~scale:}}$

Since the sphere is the only object hanging on the lower scale, we can simply use the mass of sphere $m$ in $(5)$, and get the reading $T_{lower}$:

$$begin{aligned}
T_{lower}&=m_scdot g
\&=3cdot 9.81
\&=boxed{29.43mathrm{~N}}
end{aligned}$$

Step 7
7 of 8
$mathrm{underline {Calculating~for~the~upper~scale:}}$

The upper scale has two masses hanging on it: Mass of sphere $m_s$and mass of the block $m_b$ (Mass of lower scale is neglected). So both masses are going to contribute to gravitational force $F_g$:

$$F_g=(m_1+m_2)cdot g$$

Applying this to the formula $(5)$, we can find the reading on the upper scale $T_{upper}$ as:

$$begin{aligned}
T_{upper}&=(m_1+m_2)cdot g
\&=(1.2+3)cdot 9.81
\&=boxed{41.2mathrm{~N}}
end{aligned}$$

Result
8 of 8
$T_{lower}=29.43mathrm{~N}$

$T_{upper}=41.2mathrm{~N}$

Exercise 19
Step 1
1 of 5
In this task, we know the weight on Earth and acceleration of gravity on Earth and the Moon. We need to calculate the mass and weight on the moon.
Known:

$$
begin{align*}
F_s&=585 mathrm{N} \
g_E&=9.8 mathrm{m/s^2}\
g_M&=1.6 mathrm{m/s^2}
end{align*}
$$

Unknown:

$$
begin{align*}
m&=? \
F_{s(Moon)}&=?
end{align*}
$$

Step 2
2 of 5
The expression for gravitational force is: $F_g=mcdot g$. Scale reads the force of gravity $F_g$, so to get mass we divide force with acceleration of gravity.

$$
begin{align*}
F_s&=F_g \
F_s&=mcdot g \
m&=dfrac{F_s}{g} \
\
m&=dfrac{F_s}{g_E} \
&=dfrac{585 mathrm{kg}}{9.8 mathrm{m/s^2}} \
&=boxed{59.69 mathrm{kg} }
end{align*}
$$

Step 3
3 of 5
We calculate the gravitational force on the Moon in the same way as on Earth, but we must be careful to include the correct acceleration of gravity.

$$
begin{align*}
F_{s(Moon)}&=F_{g(Moon)} \
&=mcdot g_M \
&=59.69 mathrm{kg}cdot 1.6 mathrm{m/s^2} \
&=boxed{95.51 mathrm{N}}
end{align*}
$$

Step 4
4 of 5
We can observe that due to the smaller acceleration of the gravitational force the scale on the moon will show about 6 times less force.
Result
5 of 5
$$
begin{align*}
a)& m=59.69 mathrm{kg} \
b)& F_{s(Moon)}=95.51 mathrm{N}
end{align*}
$$
Exercise 20
Solution 1
Solution 2
Step 1
1 of 8
In this task we have to calculate the force with which a person acts on the scales. Known data are human mass and elevator acceleration in several cases. We choose positive direction to be upward.
Known:

$$
begin{align*}
m&=75.0 mathrm{kg} \
g&=9.80 mathrm{ N} \
a_A&=0 mathrm{m/s^2} \
a_B&=-2 mathrm{m/s^2} \
a_C&=-2 mathrm{m/s^2} \
a_D&=0 mathrm{m/s^2} \
a_E&=-a
end{align*}
$$

Unknown:

$$
begin{align*}
F_s&=?
end{align*}
$$

Step 2
2 of 8
The force with which a person acts on the scales is its weight and the inertial force that results from the acceleration of the elevator. The term for the force on the scale reads:

$$
begin{align*}
F_s&=F_g+mcdot a\
&=m(g+a)
end{align*}
$$

Step 3
3 of 8
Case A: elevator moves at constant speed.

$$
begin{align*}
F_s(A)&=m(g+a_A) \
&=75 mathrm{kg}cdot 9.8mathrm{m/s^2}\
&=boxed{735 mathrm{N}} \
end{align*}
$$

Step 4
4 of 8
Case B: elevator slows down while moving upward.

$$
begin{align*}
F_s(B)&=m(g+a_B) \
&=75 mathrm{kg}cdot (9.8mathrm{m/s^2}-2mathrm{m/s^2})\
&=boxed{585 mathrm{N}} \
end{align*}
$$

Step 5
5 of 8
Case C: elevator speed up while moving downward.

$$
begin{align*}
F_s(C)&=m(g+a_C) \
&=75 mathrm{kg}cdot (9.8mathrm{m/s^2}-2mathrm{m/s^2})\
&=boxed{585 mathrm{N}} \
end{align*}
$$

Step 6
6 of 8
Case D: elevator moves downward at constant speed.

$$
begin{align*}
F_s(D)&=m(g+a_D) \
&=75 mathrm{kg}cdot (9.8mathrm{m/s^2}+0mathrm{m/s^2})\
&=boxed{735 mathrm{N}} \
end{align*}
$$

Step 7
7 of 8
Case E: elevator slows to a stop.

$$
begin{align*}
F_s(E)&=m(g+a_E) \
&=boxed{mcdot (g-a)}
end{align*}
$$

Result
8 of 8
$$
begin{align*}
A)& 735 mathrm{N} \
B)& 585 mathrm{N} \
C)& 585 mathrm{N} \
D)& 735 mathrm{N} \
E)& F_s=mcdot(g-a)
end{align*}
$$
Step 1
1 of 7
Given $m = 75.0 ,mathrm{kg}$, we can calculate the forces exerted by the scale on a person. Such that $F_{net}$ is the total force experienced by the system, $F_{scale}$ is the force acted by the scale on the person, $vec{a}$ is the acceleration of the elevator and lastly, $F_g$ is the force of the person’s weight on the scale. Given the equation:

$$
begin{equation}
F_{net} = F_{scale} – F_{g} = ma
end{equation}
$$

Step 2
2 of 7
$textbf{a.) Elevator moving at constant speed.}$

Since the elevator’s speed is constant, we know that acceleration $vec{a} = 0$ and $F_{net} =0$. Therefore, using Equation 1,

$$
begin{align*}
F_{scale} &= F_g\
&= mg\
&= (75.0 , mathrm{kg})(9.80,mathrm{frac{m}{s^2}})\
&= boxed{735 ,mathrm{N}}
end{align*}
$$

Step 3
3 of 7
$textbf{b.) Elevator slows down at $2.0,mathrm{frac{m}{s^2}}$ while going up.}$

The elevator is slowing down while moving upward with an acceleration $vec{a} = -2.0 ,mathrm{frac{m}{s}}^2$. Therefore, using Equation 1,

$$
begin{align*}
F_{scale} &= F_{net}+F_g\
&= ma+mg \
&= m(a+g)\
&= (75.0,mathrm{kg})(-2.00,mathrm{frac{m}{s^2}} + 9.80,mathrm{frac{m}{s^2}})\
&= boxed{585 ,mathrm{N}}
end{align*}
$$

Step 4
4 of 7
$textbf{c.) Elevator speeds up at $2.0,mathrm{frac{m}{s^2}}$ while going down.}$

The elevator is speeding up while moving downward with an acceleration $vec{a} = -2.0,mathrm{frac{m}{s}}^2$. Thus, using Equation 1,

$$
begin{align*}
F_{scale} &= F_{net}+F_g\
&= ma+mg \
&= m(a+g)\
&= (75.0,mathrm{kg})(-2.00,mathrm{frac{m}{s^2}} + 9.80,mathrm{frac{m}{s^2}})\
&= boxed{585 ,mathrm{N}}
end{align*}
$$

Step 5
5 of 7
$textbf{d.) Elevator going down at constant speed}$

The elevator is moving downward at a constant speed, therefor $vec{a} = 0$ and $F_{net} = 0$. Using Equation 1,

$$
begin{align*}
F_{scale} &= F_g\
&= mg\
&= (75.0 , mathrm{kg})(9.80,mathrm{frac{m}{s^2}})\
&= boxed{735 ,mathrm{N}}
end{align*}
$$

Step 6
6 of 7
$textbf{e.) Elevator slows to a stop.}$

The elevator is slowing down to a stop at a constant magnitude of acceleration $vec{a}$. Thus, using Equation 1,

$$
begin{align*}
F_{scale} &= F_{net}+F_g\
&= ma+mg\
&= (75.0,mathrm{kg})(a) + (75.0,mathrm{kg})(9.80,mathrm{frac{m}{s^2}})\
&= boxed{75.0a + 735 ,mathrm{N}}
end{align*}
$$

Result
7 of 7
$textbf{a.)$F_{scale} = 735 ,mathrm{N}$}$

$textbf{b.)$F_{scale} = 585 ,mathrm{N}$}$

$textbf{c.)$F_{scale} = 585 ,mathrm{N}$}$

$textbf{d.)$F_{scale} = 735 ,mathrm{N}$}$

$$
textbf{e.)$F_{scale} = 75.0a + 735 ,mathrm{N}$}
$$

unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New