All Solutions
Page 808: Practice Problems
^{234}_{92}textrm{U}rightarrow ^{230}_{90}textrm{Th}+^{4}_{2}alpha
$$
^{234}_{92}textrm{U}rightarrow ^{230}_{90}textrm{Th}+^{4}_{2}alpha
$$
^{230}_{90}textrm{Th}rightarrow ^{226}_{88}textrm{Ra}+^{4}_{2}alpha
$$
^{230}_{90}textrm{Th}rightarrow ^{226}_{88}textrm{Ra}+^{4}_{2}alpha
$$
^{226}_{88}textrm{Ra}rightarrow ^{222}_{86}textrm{Rn}+^{4}_{2}alpha
$$
^{226}_{88}textrm{Ra}rightarrow ^{222}_{86}textrm{Rn}+^{4}_{2}alpha
$$
^{214}_{82}textrm{Pb}rightarrow ^{214}_{83}textrm{Bi}+e^-+hatnu
$$
^{214}_{82}textrm{Pb}rightarrow ^{214}_{83}textrm{Bi}+e^-+hatnu
$$
^{14}_{6}textrm{C}rightarrow ^{14}_{7}textrm{N}+e^-+hatnu
$$
^{14}_{6}textrm{C}rightarrow ^{14}_{7}textrm{N}+e^-+hatnu
$$
and we have that
[A=14-0-0=14]
[Z=6+1=7]
So the element we are looking for is $boxed{^{14}_{7}textrm{N}}$.
which makes that
[A=55-0-0=55]
[Z=24+1=25]
So the element we are looking for is $boxed{^{55}_{25}textrm{Mn}}$.
textrm{a) } ^{14}_{7}textrm{N}
$$
$$
textrm{b) } ^{55}_{25}textrm{Mn}
$$
^{263}_{106}textrm{Sg}rightarrow ^{259}_{104}textrm{Rf}+^{4}_{2}alpha
$$
^{263}_{106}textrm{Sg}rightarrow ^{259}_{104}textrm{Rf}+^{4}_{2}alpha
$$
$$
^{15}_{7}textrm{N}+^{1}_{1}textrm{H} rightarrow ^{A}_{Z}textrm{X}+ ^4_2alpha
$$
[A=15+1-4=12]
[Z=7+1-2=6]
so the element we are looking for is $boxed{^{12}_6textrm{C}}$.
^{15}_{7}textrm{N}+^{1}_{1}textrm{H} rightarrow ^{12}_{6}textrm{C}+ ^4_2alpha
$$
$$
^{A}_{Z}textrm{X}rightarrow^{A}_{Z+1}textrm{Y}+ {^{textrm{
0}}_{textrm{-1}}}e+^0_0hatnu
$$
So we see that the atomic number of the child nuclei increases by 1 while the mass number remains the same.
$$
^{210}_{80}textrm{Pb}rightarrow^{210}_{81}textrm{Tl}+ {^{textrm{
0}}_{textrm{-1}}}e+^0_0hatnu
$$
$$
^{210}_{83}textrm{Bi}rightarrow^{210}_{84}textrm{Po}+ {^{textrm{
0}}_{textrm{-1}}}e+^0_0hatnu
$$
$$
^{234}_{90}textrm{Th}rightarrow^{234}_{91}textrm{Pa}+ {^{textrm{
0}}_{textrm{-1}}}e+^0_0hatnu
$$
$$
^{239}_{93}textrm{Np}rightarrow^{239}_{94}textrm{Pu}+ {^{textrm{
0}}_{textrm{-1}}}e+^0_0hatnu
$$
textrm{a) }^{210}_{80}textrm{Pb}rightarrow^{210}_{81}textrm{Tl}+ {^{textrm{
0}}_{textrm{-1}}}e+^0_0hatnu
$$
$$
textrm{b) }^{210}_{83}textrm{Bi}rightarrow^{210}_{84}textrm{Po}+ {^{textrm{
0}}_{textrm{-1}}}e+^0_0hatnu
$$
$$
textrm{c) }^{234}_{90}textrm{Th}rightarrow^{234}_{91}textrm{Pa}+ {^{textrm{
0}}_{textrm{-1}}}e+^0_0hatnu
$$
$$
textrm{d) }^{239}_{93}textrm{Np}rightarrow^{239}_{94}textrm{Pu}+ {^{textrm{
0}}_{textrm{-1}}}e+^0_0hatnu
$$
$$
m=m_0cdot(frac{1}{2})^{frac{T}{T_{1/2}}}
$$
[m=1cdot(frac{1}{2})^{frac{24.6}{13.3}}=1cdot frac{1}{4}=boxed{0.25textrm{ g}}]
m=0.25textrm{ g}
$$
$$
m=m_0cdot(frac{1}{2})^{frac{T}{T_{1/2}}}
$$
[m=4cdot(frac{1}{2})^{frac{8}{2}}=4cdot frac{1}{16}=boxed{0.25textrm{ g}}]
m=0.25textrm{ g}
$$
$$
A=A_0cdot(frac{1}{2})^{frac{T}{T_{1/2}}}
$$
$$
A=2times 10^6cdot(frac{1}{2})^{frac{275}{138}}=2times 10^6cdot frac{1}{4}=boxed{0.5 times 10^6textrm{ Bq}}
$$
A=0.5 times 10^6textrm{ Bq}
$$
$$
A=A_0cdot(frac{1}{2})^{frac{T}{T_{1/2}}}
$$
$$
A=A_0(frac{1}{2})^{frac{6}{12.3}}=boxed{0.71 A_0}
$$
So the brightness is 0.71 of the original.