All Solutions
Page 757: Practice Problems
$$
E_n=-frac{13.6}{n^2}
$$
$$
E_2=-frac{13.6}{4}=boxed{-3.4textrm{ eV}}
$$
$$
E_3=-frac{13.6}{9}=boxed{-1.51textrm{ eV}}
$$
$$
E_4=-frac{13.6}{16}=boxed{-0.85textrm{ eV}}
$$
E_2=-3.4textrm{ eV}
$$
$$
E_3=-1.51textrm{ eV}
$$
$$
E_4=-0.85textrm{ eV}
$$
$$
E_n=-frac{13.6}{n^2}textrm{ eV}
$$
$$
Delta E=E_3-E_2=-13.6times(frac{1}{9}-frac{1}{4})=frac{5}{36}times 13.6
$$
Finally, we have that
$$
boxed{Delta E =1.89textrm{ eV}}
$$
Delta E =1.89textrm{ eV}
$$
$$
E_n=-frac{13.6}{n^2}textrm{ eV}
$$
$$
Delta E=E_4-E_2=-13.6times(frac{1}{16}-frac{1}{4})=frac{3}{16}times 13.6
$$
Finally, we have that
$$
boxed{Delta E =2.55textrm{ eV}}
$$
Delta E =2.55textrm{ eV}
$$
$$
r_n=frac{h^2n^2}{4pi^2Kmq^2}
$$
and the fact that
$$
r_1=5.3times 10^{-11}textrm{ m}
$$
$$
r_n=n^2r_1
$$
$$
r_2=4times r_1=4times 5.3times 10^{-11}=boxed{21.2times 10^{-11}textrm{ m}}
$$
r_3=9times r_1=9times 5.3times 10^{-11}=boxed{47.7times 10^{-11}textrm{ m}}
$$
r_4=16times r_1=16times 5.3times 10^{-11}=boxed{84.8times 10^{-11}textrm{ m}}
$$
r_2=21.2times 10^{-11}textrm{ m}
$$
$$
r_3=47.7times 10^{-11}textrm{ m}
$$
$$
r_4=84.8times 10^{-11}textrm{ m}
$$
$$
frac{d_0}{a_0}=frac{d_{ball}}{X}
$$
$$
X=frac{d_{ball}}{d_0}a_0=frac{7.5times 10^{-2}}{2.5times 10^{-15}}times 5times 10^{-11}
$$
Finally, we have that
$$
boxed{X=1.5times 10^3textrm{m}}
$$
X=1.5times 10^3textrm{m}
$$
but the result is in cm we need to convert it to meter
so we multipy by $10^{-2}$
dfrac{1.25times 10^{-15}}{5times 10{-11}}= dfrac{3.275times 10^{-2}}{X}
$$
$$
E_n=-frac{13.6}{n^2}textrm{ eV}
$$
$$
E_{32}=E_3-E_2=-13.6times(frac{1}{9}-frac{1}{4})=frac{5}{36}times 13.6
$$
Finally, we have that
$$
E_{32} =1.89textrm{ eV}
$$
$$
E_{ph}=frac{hc}{lambda}rightarrowlambda=frac{hc}{E_{ph}}
$$
where $hc=1240times 10^{-9}$eV$cdot$m
$$
lambda=frac{1240times 10^{-9}}{1.89}=boxed{656times 10^{-9} textrm{ m}}
$$
$$
E_{42}=E_4-E_2=-13.6times(frac{1}{16}-frac{1}{4})=frac{3}{16}times 13.6
$$
Finally, we have that
$$
E_{42} =2.55textrm{ eV}
$$
$$
lambda=frac{1240times 10^{-9}}{2.55}=boxed{486times 10^{-9} textrm{ m}}
$$
textrm{a) }lambda=656times 10^{-9} textrm{ m}
$$
$$
textrm{b) }lambda=486times 10^{-9} textrm{ m}
$$
$$
E_{ph}=E_m-E_n=8.82-6.67=boxed{2.15textrm{ eV}}
$$
$$
lambda=frac{hc}{Delta E}
$$
where $hc=1240times 10^{-9}$eV$cdot$m.
$$
lambda=frac{1240times 10^{-9}}{2.15}=boxed{576times 10^{-9}textrm{ m}}
$$
textrm{a) }E_{ph}=2.15textrm{ eV}
$$
$$
textrm{b) }lambda=576times 10^{-9}textrm{ m}
$$
$$
E_{ph}=frac{hc}{lambda}
$$
where $hc=1240times 10^{-9}$eV$cdot$m.
$$
E_{ph}=frac{1240times 10^{-9}}{304times 10^{-9}}=4.08textrm{ eV}
$$
$$
E_{m}=E_1+E_{ph}=-54.4+4.08=boxed{-50.3textrm{ eV}}
$$
E_{m}=-50.3textrm{ eV}
$$