All Solutions
Page 736: Practice Problems
$$
lambda=frac{h}{p}=frac{h}{mv}
$$
$$
lambda=frac{6.63times 10^{-34}}{7times 8.5}
$$
Which gives that
$$
boxed{lambda=1.11times 10^{-35}textrm{ m}}
$$
b) The effects are not observable since the de Broglie wavelength is too small.
textrm{a) }lambda=1.11times 10^{-35}textrm{ m}
$$
$$
textrm{b) The de Broglie wavelength is too small to be observable. }
$$
$$
frac{mv^2}{2}=qV
$$
which makes that the speed is given as
$$
v=sqrt{frac{2qV}{m}}=sqrt{frac{2times 1.6times 10^{-19}times 250}{9.11times 10^{-31}}}
$$
Finally,
$$
boxed{v=9.4times 10^6, frac{textrm{m}}{textrm{s}}}
$$
Now, de Broglie’s wavelength is given by
$$
lambda=frac{h}{mv}=frac{6.63times 10^{-34}}{9.11times 10^{-31}times 9.4times 10^6}
$$
which gives that
$$
boxed{lambda=0.077times 10^{-9}textrm{ m}}
$$
v=9.4times 10^6, frac{textrm{m}}{textrm{s}}
$$
$$
lambda=0.077times 10^{-9}textrm{ m}
$$
$$
lambda=frac{h}{mv}
$$
So the velocity is given as
$$
v=frac{h}{mlambda}
$$
Now, we can insert this into the expression for kinetic energy
$$
K=frac{mv^2}{2}=frac{mh^2}{2m^2lambda^2}=frac{h^2}{2mlambda^2}
$$
Now, we can plug in the values to have that
$$
K=frac{h^2}{2mlambda^2}=frac{6.63^2times 10^{-68}}{2times 9.11times 10^{-31}times 0.125^2times 10^{-18}}
$$
Which gives us that
$$
K=154times 10^{-19}textrm{ J}
$$
Now, the voltage needed for an electron to achieve this kinetic energy is
$$
V=frac{K}{e}=frac{154times 10^{-19}}{1.6times 10^{-19}}
$$
Finally, we have that
$$
boxed{V=96.5 textrm{ V}}
$$
V=96.5 textrm{ V}
$$
$$
lambda=frac{h}{mv}
$$
So the velocity is given as
$$
v=frac{h}{mlambda}
$$
Now, we can insert this into the expression for kinetic energy
$$
K=frac{mv^2}{2}=frac{mh^2}{2m^2lambda^2}=frac{h^2}{2mlambda^2}
$$
Now, we can plug in the values to have that
$$
K=frac{h^2}{2mlambda^2}=frac{6.63^2times 10^{-68}}{2times 1.67times 10^{-27}times 0.14^2times 10^{-18}}
$$
Which gives us that
$K=671times 10^{-23}textrm{ J}$
And after we transfer it to eVs we have that
$$
K=frac{671times 10^{-23}}{1.6times 10^{-19}}
$$
finally, we have that
$$
boxed{K=0.041textrm{ eV}}
$$
K=0.041textrm{ eV}
$$