Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Textbook solutions

All Solutions

Page 71: Section Review

Exercise 34
Solution 1
Solution 2
Step 1
1 of 3
The motion is uniformly accelerated (speed/velocity decreases), so we use table 3.3:

We, at this point, expect the acceleration to be negative, since it acts opposite to motion…

$v_{f}=v_{i}+overline{a}t$

$d_{f}-d_{i}=v_{i}t+displaystyle frac{1}{2}overline{a}t^{2}$

$v_{f}^{2}=v_{i}^{2}+ 2 overline{a}(d_{f}-d_{i})$

—————————–

Step 2
2 of 3
We find a from

$v_{f}^{2}=v_{i}^{2}+ 2 overline{a}(d_{f}-d_{i})$

$displaystyle mathrm{a}=frac{v_{f}^{2}-v_{i}^{2}}{2(d_{mathrm{f}}-d_{mathrm{i}})}$=

$=displaystyle frac{0.0mathrm{m}/mathrm{s}-(23mathrm{m}/mathrm{s})^{2}}{(2)(210mathrm{m})}$=

$$
=-1.3mathrm{m}/mathrm{s}^{2}
$$

Result
3 of 3
$-1.3 m/s^2$
Step 1
1 of 5
**We know that:**
– The initial velocity is $v_{text{i}}=23 , frac{text{m}}{text{s}}$
– The final velocity is $v_{text{f}}=0$(since the car stops)
– The distance traveled before stopping $d=210text{ m}$

We need to calculate the acceleration(deceleration) of the car

Step 2
2 of 5
We know that for an accelerating body the initial and final velocities can be related to the acceleration and distance traveled by the expression:
$$
v_{text{f}}^2 = v_{text{i}}^2 + 2 cdot a cdot d
tag{1}
$$
Step 3
3 of 5
Rearranging $(1)$ for the acceleration we get:
$$
a = frac{v_{text{f}}^2 – v_{text{i}}^2}{2d}
tag{2}
$$
Now inserting the fact that the final velocity is zero we get:
$$
a= frac{- v_{text{i}}^2}{2d}
tag{3}
$$
Step 4
4 of 5
Now plugging in the numbers we calculate:
$$
begin{align*}
a &= frac{-left(23 , frac{text{m}}{text{s}} right)^2}{2 cdot 210text{ m}}\
&= boxed{-1.3 , frac{text{m}}{text{s}^2}}
end{align*}
$$

This is the required acceleration of the car!

Result
5 of 5
$a = -1.3, frac{text{m}}{text{s}^2}$
Exercise 35
Step 1
1 of 1
$$
v_{f}^{2} = v_{i}^{2} + 2ad_{f}
$$
This is the only equation that has the given initial and final velocities, the acceleration, and the displacement.
Exercise 36
Step 1
1 of 3
The motion is uniformly accelerated at first, so we use table 3.3:

$v_{f}=v_{i}+overline{a}t$

$d_{f}-d_{i}=v_{i}t+displaystyle frac{1}{2}overline{a}t^{2}$

$$
v_{f}^{2}=v_{i}^{2}+ 2 overline{a}(d_{f}-d_{i})\\
—————————–\$
1. Accelerating, \$d_{i}=0, v_{i}=0, v_{f}=5.0 m/s, t=4.5 s.\\
$$

Step 2
2 of 3
Since the initial velocity was 0, the first formula gives

$a=displaystyle frac{v_{f}}{t_{1}}=frac{5.00 m/s}{4.5 s}=frac{10}{9}m/s^{2}\\$$From the second formula

d_{f1}=displaystyle $frac{1}{2}$cdot($frac{10}{9}$ m/s^{2})cdot(4.5s)^{2}=11.25m

$2. Constant speed$

d_${mathrm{f}2}$=v_{2}t_{2}=(5.0$mathrm{m}$/$mathrm{s}$)(4.5$mathrm{s}$)=22.5$mathrm{m}$

$total distance$=

11.25$mathrm{m}$+22.5$mathrm{m}$=

=34$$mathrm{m}$

Result
3 of 3
34 m
Exercise 37
Solution 1
Solution 2
Step 1
1 of 3
The motion is uniformly accelerated, so we use table 3.3:

$v_{f}=v_{i}+overline{a}t$

$d_{f}-d_{i}=v_{i}t+displaystyle frac{1}{2}overline{a}t^{2}$

$v_{f}^{2}=v_{i}^{2}+ 2 overline{a}(d_{f}-d_{i})$

Step 2
2 of 3
$v_{f}^{2}=v_{i}^{2}+ 2 overline{a}(d_{f}-d_{i})$ and $d_{mathrm{i}}=0$, so

$v_{f}^{2}=v_{i}^{2}+ 2 overline{a}(d_{f})$

$v_{f}$=$sqrt{(0.0mathrm{m}/mathrm{s})^{2}+2(5.0mathrm{m}/mathrm{s}^{2})(5.0times 10^{2}mathrm{m})}=71mathrm{m}/mathrm{s}$

Result
3 of 3
71 m/s
Step 1
1 of 5
**We know that:**
– The initial velocity is $v_{text{i}}=0$(since the plane starts from rest)
– The distance traveled is $d=500text{ m}$
– The acceleration of the plane $a=5.0 , frac{text{m}}{text{s}^2}$

We need to find the final velocity of the plane.

Step 2
2 of 5
We know that for an accelerating body the initial and final velocities can be related to the acceleration and distance traveled by the expression:
$$
v_{text{f}}^2 = v_{text{i}}^2 + 2 cdot a cdot d
tag{1}
$$
Step 3
3 of 5
Rearranging $(1)$ for the final velocity we get:
$$
v_{text{f}} = sqrt{v_{text{i}}^2 + 2 cdot a cdot d}
tag{2}
$$

Now inserting the fact that the initial velocity is zero we get:
$$
v_{text{f}} = sqrt{2 cdot a cdot d}
tag{3}
$$

Step 4
4 of 5
Now plugging in the numbers we calculate:
$$
begin{align*}
v_{text{f}} &= sqrt{2 cdot left(5.0 , frac{text{m}}{text{s}^2} right) cdot 500text{ m}}\
&= boxed{71 , frac{text{m}}{text{s}}}
end{align*}
$$

This is the final velocity of the plane.

Result
5 of 5
$v_{text{f}} = 71 , frac{text{m}}{text{s}}$
Exercise 38
Step 1
1 of 4
$$
v_{f} = v_{i} + at_{f}
$$
This formula has the constants for initial and final velocity, acceleration, and time.
Step 2
2 of 4
$$
v_{f} = 0 + left(5.0 m/s^{2} right)left( 14 sright)
$$
The initial velocity starts at the beginning at 0 m/s. Plug in the other constants, acceleration and time.
Step 3
3 of 4
$v_{f} = 70$ m/s
Compute.
Result
4 of 4
$70$ m/s
Exercise 39
Solution 1
Solution 2
Step 1
1 of 4
$$
textbf{underline{textit{Solution}}}
$$
Step 2
2 of 4
$textbf{underline{textit{Knowns:}}}$ knowing the initial speed of the airplane, the acceleration constant and the duration of motion one can use the following equation to find the distance the airplane moved

$$
d=v_it+dfrac{1}{2}at^2tag{1}
$$

And now knowing the distance we can use the following equation to find the final speed “after 30.0 s” by which the the airplane took off

$$
{v_f}^2 = {v_i}^2 + 2 a d tag{2}
$$

And it is given that the air plane have an initial speed of zero, and the constant of acceleration by which the airplane is accelerating is 3 m/s$^2$ and the duration of
motion is 30 seconds.

Step 3
3 of 4
begin{center} textbf{underline{textit{Calculations}}} end{center}
enumerate[bfseries (a)]
item Using equation (1) to find the distance the airplane moved during the 30 seconds

begin{align*}
d&= 0 + dfrac{1}{2} times 3 times (30)^2\
&= 0.50 times 3.0 times (30)^2\
&= fbox{$1350 ~ rm{m}$}
end{align*}
textbf{underline{textit{note:}}} the least number of significant figures is 2 significant figures, therefor the final answer is rounded to 2 significant figure, hence the final results should be 1400 m.\

item And knowing the distance the airplane moved during the 30 seconds, we can find the final velocity the airplane reached using equation (2), we calculate the final velocity as follows

begin{align*}
{v_f}^2 &= 0 + 2 times 3.0 times 1350 \
&= 8100 \
intertext{Taking, the square root to find the value of the final velocity, we get}
v_f &= sqrt{8100}\
&= fbox{$90 ~ rm{m/s}$}
end{align*}

Result
4 of 4
enumerate[bfseries (a)]

item 1400 m.
item 90 m/s .

Step 1
1 of 3
The motion is uniformly accelerated, so we use table 3.3:

$v_{f}=v_{i}+overline{a}t$

$d_{f}-d_{i}=v_{i}t+displaystyle frac{1}{2}overline{a}t^{2}$

$v_{f}^{2}=v_{i}^{2}+ 2 overline{a}(d_{f}-d_{i})$

$——————-\\$
(a)\$d_{i}=0

$

Step 2
2 of 3
$d_{f}=v_{i}t+displaystyle frac{1}{2}overline{a}t^{2}=\\$$=(0.0displaystyle $mathrm{m}$l$mathrm{s}$)(30.0$mathrm{s}$)^{2}+($frac{1}{2}$)(3.00$mathrm{m}$/$mathrm{s}$^{2})(30.0$mathrm{s}$)^{2}=1.35times 10^{3}$mathrm{m}$

($mathrm{b}$)

v_{f}=v_{i}+$overline{a}$t$\\$=0.0$mathrm{m}$/$mathrm{s}$+(3.00$mathrm{m}$/$mathrm{s}$^{2})(30.0$mathrm{s}$)

=90.0$mathrm{m}$/$$mathrm{s}$

Result
3 of 3
$1.35times 10^{3}mathrm{m}\$$90.0$mathrm{m}$/$$mathrm{s}$
Exercise 40
Step 1
1 of 3
Here are the graphs, annotated
Step 2
2 of 3
Exercise scan
Result
3 of 3
click for graphs
Exercise 41
Step 1
1 of 1
To calculate the acceleration, you can have someone read a speedometer during certain time intervals. Then someone would plot the speed and times on graph and find the slope based on the graph.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New