All Solutions
Page 654: Practice Problems
Its working principle is that in order to determine the direction of the magnetic force on a positive moving charge, you need to point your right thumb in the direction of the current, your index finger in the direction of the magnetic field, and your middle finger will point in the direction of the the resulting magnetic force.
$$F=ILB$$
$$F=8cdot 0.5cdot 0.4$$
Finally, the force is:
$$boxed{F=1.6,,rm{N}}$$
$$
F=ILB
$$
If we now plug in the values we obtain the following
$$
F=8times 0.5times 0.4
$$
Finally
$$
boxed{F=1.6textrm{ N}}
$$
F=1.6textrm{ N}
$$
$$F=ILB$$
$$B=frac{F}{IL}$$
$$B=frac{0.6}{6cdot 0.75}$$
Finally, the magnetic field is:
$$boxed{B=0.13,,rm{T}}$$
$$
F=ILB
$$
From here, we can express the magnetic field strength as
$$
B=frac{F}{IL}
$$
If we now plug in the values we obtain the following
$$
B=frac{0.6}{6times 0.75}
$$
Finally
$$
boxed{B=0.13textrm{ T}}
$$
B=0.13textrm{ T}
$$
$$F_g=F$$
$$F=ILB$$
$$B=frac{F}{LB}$$
$$B=frac{F_g}{LB}$$
$$B=frac{0.35}{6cdot 0.4}$$
Finally, the strength of the magnetic field is:
$$boxed{B=0.15,,rm{T}}$$
$$
F_B=ILB
$$
On the other hand, we know that in order to balance the gravitational force
$$
F_B=F_g=ILB
$$
From here, we can express the magnetic field strength as
$$
B=frac{F_g}{IL}
$$
If we now plug in the values we obtain the following
$$
B=frac{0.35}{6times 0.4}
$$
Finally
$$
boxed{B=0.15textrm{ T}}
$$
B=0.15textrm{ T}
$$
$$F=ILB$$
$$I=frac{F}{LB}$$
$$I=frac{0.38}{0.1cdot 0.49}$$
Finally, the current is:
$$boxed{I=7.8,,rm{A}}$$
$$
F_B=ILB
$$
From here, we can express the current as
$$
I=frac{F_B}{LB}
$$
If we now plug in the values we obtain the following
$$
I=frac{0.38}{0.1times 0.49}
$$
Finally
$$
boxed{I=7.8textrm{ A}}
$$
I=7.8textrm{ A}
$$
Middle finger points at the magnetic field lines, index finger in the direction of the moving charge and thumb in the direction of the force.
$$F=qcdot (vec{v} times vec{B} )$$
Or written the other way:
$$F=qvBsin (theta)$$
$$F=1.6cdot 10^{-19} cdot 4cdot 10^6cdot 0.5$$
Finally, the force is:
$$boxed{F=3.2cdot 10^{-13},,rm{N}}$$
$$
vec F=q(vec vtimes vec B)
$$
$$
F=qvBsintheta=qvB
$$
Now, we can plug in the values
$$
F=1.6times 10^{-19}times 4times 10^6times 0.5
$$
$$
boxed{F=3.2times 10^{-13}textrm{ N}}
$$
F=3.2times 10^{-13}textrm{ N}
$$
$$F=qvBsin (theta )$$
$$F=2cdot 1.6cdot 10^{-19}cdot 3cdot 10^4cdot 0.09$$
Finally, the force is:
$$boxed{F=8.6cdot 10^{-16},,rm{N}}$$
$$
vec F=q(vec vtimes vec B)
$$
$$
F=qvBsintheta=2evB
$$
Now, we can plug in the values
$$
F=2times1.6times 10^{-19}times 3times 10^4times 0.09
$$
Finally
$$
boxed{F=8.6times 10^{-16}textrm{ N}}
$$
F=8.6times 10^{-16}textrm{ N}
$$
$$F=qvBsin (theta )$$
$$F=3cdot 1.6cdot 10^{-19}cdot 9cdot 10^6cdot 0.04$$
Finally, the force is:
$$boxed{F=1.7cdot 10^{-13},,rm{N}}$$
$$
vec F=q(vec vtimes vec B)
$$
$$
F=qvBsintheta=3evB
$$
Now, we can plug in the values
$$
F=3times1.6times 10^{-19}times 9times 10^6times 0.04
$$
Finally
$$
boxed{F=1.7times 10^{-13}textrm{ N}}
$$
F=1.7times 10^{-13}textrm{ N}
$$
$$F=qvBsin (theta )$$
$$F=2cdot 1.6cdot 10^{-19}cdot 4cdot 10^4cdot 0.05$$
Finally, the force is:
$$boxed{F=6.4cdot 10^{-16},,rm{N}}$$
$$
vec F=q(vec vtimes vec B)
$$
$$
F=qvBsintheta=2evB
$$
Now, we can plug in the values
$$
F=2times1.6times 10^{-19}times 4times 10^4times 0.05
$$
Finally
$$
boxed{F=6.4times 10^{-16}textrm{ N}}
$$
F=6.4times 10^{-16}textrm{ N}
$$