All Solutions
Page 536: Assessment
When white light is used, we get sets of coloured bands.
Since I would use the light with know wavelength, in this moment I could use equation
$$
begin{align}
d=frac{lambdacdot L}{x}
end{align}
$$
to calculate the distance $d$.
Soap film has a higher index of refraction than the air, so when light reflects off a soap surface again its phase changes, and a wavelength decreases to half of the original.
$$
begin{align}
lambda&=frac{xcdot d}{L} \
end{align}
$$
we conclude that a wavelength is proportional to the distance between lines.
Because $lambda_r>lambda_v$ spacing between red lines will be greater than between violet lines.
Gratings with large number of slits give patterns with sharp lines with more intense colors close together.
$$
begin{align}
lambda&=frac{xcdot d}{L} \
end{align}
$$
we conclude that a wavelength is proportional to the distance between lines.
Since violet light has the smallest wavelength, bright lines will be the closest.
$textbf{a.}$ colors on soap bubbles are the product of $interference$ on its extremely thin film of soapy water
$textbf{b.}$ rose petals are composed of $pigment$-containing cells
$textbf{c.}$ on oil films, just like on soap bubbles, light $interferes$
$textbf{d.}$ a rainbow appears when Sun light $refracts$ in rain drops
A single slit diffraction pattern consists of a bright, broad central band with dimmer side bands
As the width of a slit decreases, bands get wider and dimmer.
$$
begin{align}
lambda=dcdotsintheta
end{align}
$$
We can conclude that an angle of diffraction is inversely proportional to the size of grating, so for situation $a$ diffraction patter will be more rare and for $b$ narrower.
$$
begin{align}
lambda=dcdotsintheta
end{align}
$$
We see that wavelength is proportional to angle $theta$.
If they light a diffraction grating with green light, a pattern will be narrower which means $theta$ is smaller for the green light, also a wavelength.
As we can see, this problem is an example of Young’s double slit experiment so we will find the solution by using the definition for wavelength.
begin{align}
lambda&=frac{xcdot d}{L} \
lambda&=frac{1.9times 10^{-5}mcdot 1.9times 10^{-2}m}{0.8m} \
&boxed{lambda=4.51times 10^{-7}m}
end{align}
$$
lambda=4.51times 10^{-7}m
$$
The light that is used in this problem has a wavelength $lambda=5.45times10^{-7}text{ m}$
$$
begin{align}
d=frac{1}{2}cdot (m+frac{1}{2})cdotfrac{lambda}{n_f}
end{align}
$$
$$
begin{align}
d&=frac{1}{2}cdot (0+frac{1}{2})cdotfrac{5.45times10^{-7}text{ m}}{1.45} \
&boxed{d=9.4times 10^{-8}m}
end{align}
$$
d=9.4times 10^{-8}m
$$
We need to calculate the distance between two slits.
$$
begin{align}
lambda&=frac{xcdot d}{L} \
d&=frac{lambdacdot L}{x} \
d&=frac{5.42times10^{-7}mcdot 1.2m}{4times10^{-2}m} \
&boxed{d=1.63times 10^{-5}m}
end{align}
$$
d=1.63times 10^{-5}m
$$
The light that produces stripes in this problem has a wavelength $lambda=4.4times10^{-7}text{ m}$
$$
begin{align}
d=frac{1}{2}cdot (m+frac{1}{2})cdotfrac{lambda}{n_f}
end{align}
$$
Three possible thicknesses of the portion occur at $m=0,1,2$.
$$
begin{align}
d&=frac{1}{2}cdot (0+frac{1}{2})cdotfrac{4.4times10^{-7}text{ m}}{1.81} \
&boxed{d=6.08times 10^{-8}m}
end{align}
$$
Then we have $m=1$. So, we write
$$
begin{align}
d&=frac{1}{2}cdot (1+frac{1}{2})cdotfrac{4.4times10^{-7}text{ m}}{1.81} \
&boxed{d=1.82times 10^{-7}m}
end{align}
$$
And in the end $m=2$.
$$
begin{align}
d&=frac{1}{2}cdot (2+frac{1}{2})cdotfrac{4.4times10^{-7}text{ m}}{1.81} \
&boxed{d=3.04times 10^{-7}m}
end{align}
$$
$$
begin{align}
lambda&=frac{xcdot d}{L} \
end{align}
$$
But since the wavelength is same in all setups, we will modify our equation to
$$
begin{align}
frac{x}{lambda}&=frac{L}{d} \
end{align}
$$
$$
(A)
$$
$$
begin{align}
frac{x_A}{lambda}&=frac{0.6text{ m}}{1.5times10^{-4}m} \
frac{x_A}{lambda}&=4times10^{3} \
end{align}
$$
$$
(B)
$$
$$
begin{align}
frac{x_B}{lambda}&=frac{0.8text{ m}}{1.75times10^{-4}m} \
frac{x_B}{lambda}&=4.57times10^{3} \
end{align}
$$
$$
(C)
$$
$$
begin{align}
frac{x_C}{lambda}&=frac{0.8text{ m}}{1.5times10^{-4}m} \
frac{x_C}{lambda}&=5.33times10^{3} \
end{align}
$$
$$
begin{align}
{x_A<x_B<x_C}
end{align}
$$
x_A<x_B<x_C
$$
begin{align}
2cdot x&=frac{2cdotlambdacdot L}{w} \
lambda&=frac{2cdot xcdot w}{2cdot L} \
lambda&=frac{1.2times 10^{-2}text{ m}cdot 1times 10^{-4}text{ m}}{2cdot 1m} \
&boxed{lambda=6times 10^{-7}m}
end{align}
$$
lambda=6times 10^{-7}m
$$
$$
begin{align}
d=frac{1}{N}
end{align}
$$
$$
begin{align}
d&=frac{1}{2.5times10^{3} frac{lines}{cm}} \
&boxed{d=4times10^{-6}m}
end{align}
$$
d=4times10^{-6}m
$$
$$
begin{align}
2cdot x=frac{2cdot lambdacdot L}{w} \
end{align}
$$
$$
begin{align}
x&=frac{lambda_bcdot L}{w} \
x&=frac{4.5times 10^{-7}mcdot 1text{ m}}{1.5times 10^{-4}m} \
&boxed{x=3times 10^{-3}m}
end{align}
$$
x=3times 10^{-3}m
$$
$$
begin{align}
{x_{obj}}&=frac{1.22cdotlambdacdot L_{obj}}{D} \
{x_{obj}}&=frac{1.22cdot5.1times10^{-7}text{ m}cdot 1times10^{5}text{m}}{2.4text{m}} \
&boxed{x_{obj}=2.26times10^{-2}text{m}}
end{align}
$$
x_{obj}=2.26times10^{-2}text{m}
$$
$$
begin{align}
2cdot x=frac{2cdot lambdacdot L}{w} \
end{align}
$$
$2cdot x$ represent the width of the bright band so since we want the distance from the center to the first dark band, we need to divide equation by 2.
begin{align}
w&=frac{lambdacdot L}{x} \
w&=frac{4.25times 10^{-7}mcdot 7.5times 10^{-1}text{ m}}{3times 10^{-1}m} \
&boxed{w=1.06times 10^{-6}m}
end{align}
$$
w=1.06times 10^{-6}m
$$
$$
begin{align}
{x_{obj}}&=frac{1.22cdotlambdacdot L_{obj}}{D} \
{L_{obj}}&=frac{Dcdot x_{obj}}{1.22cdotlambda} \
{L_{obj}}&=frac{4times10^{-5}text{ m}cdot 7times10^{-3}text{m}}{1.22cdot 6.5times10^{-7}text{ m}} \
&boxed{L_{obj}=3.53times10^{-1}text{m}}
end{align}
$$
L_{obj}=3.53times10^{-1}text{m}
$$
$$
begin{align}
lambda=dcdotsintheta
end{align}
$$
To find $theta$, first we need to calculate $d$.
$$
begin{align}
d&=frac{1}{N} \
d&=frac{1}{1.2times10^{4} frac{lines}{cm}} \
&boxed{d=8.33times10^{-7}m}
end{align}
$$
For red light we have
$$
begin{align}
sintheta&=frac{lambda}{d} \
theta_r&=arcsin{frac{lambda_r}{d}} \
theta_r&=arcsin{left(frac{lambda_r}{d}right)} \
theta_r&=arcsin{left(frac{6.32times10^{-7}text{ m}}{8.33times10^{-7}m}right)} \
&boxed{theta_r=49^circ 21′}
end{align}
$$
$$
begin{align}
sintheta&=frac{lambda}{d} \
theta_b&=arcsin{frac{lambda_b}{d}} \
theta_b&=arcsin{left(frac{lambda_b}{d}right)} \
theta_b&=arcsin{left(frac{4.21times10^{-7}text{ m}}{8.33times10^{-7}m}right)} \
&boxed{theta_b=30^circ 22′}
end{align}
$$
$$
begin{align}
lambda=dcdotsintheta
end{align}
$$
So we write
$$
begin{align}
d=frac{lambda}{sintheta}
end{align}
$$
But we don’t know $theta$.
$$
begin{align}
tantheta&=frac{x}{L} \
theta&=arctan {frac{x}{L}}
end{align}
$$
So we write
$$
begin{align}
d&=frac{lambda}{sin{left(arctan {frac{x}{L}}right)}} \
d&=frac{6.328times10^{-7}text{ m}}{sin{left(arctan {frac{2.1times 10^{-2}text{ m}}{4text{ m}}}right)}} \
d&=1.21times 10^{-4}m \
d&=1.21times 10^{-2}cm \
end{align}
$$
$$
begin{align}
&N=frac{1 ridge}{d} \
&N=frac{1 ridge}{1.21times 10^{-2}cm} \
&boxed{N=83frac{ridge}{cm}}
end{align}
$$
First, we will find a number of ridges by using the equation
$$
begin{align}
n&={t}cdot{r} \
n&={4.01text{min}}cdot{33.3text{rpm}} \
n&=134 ridges
end{align}
$$
Now, when we know how many ridges are turned during a song, we can rind $N$.
begin{align}
&N=frac{n}{s} \
&N=frac{134 ridge}{1.6cm} \
&boxed{N=84frac{ridge}{cm}}
end{align}
$$
$b)$ $N=84frac{ridge}{cm}$
Other situation is when ray goes through a film and hits the glass lens, $n_g=1.52$. Since $n_f<n_g$, on the second reflection the phase inversion happens.
What we need here is to find wavelength of light that makes destructive interference.
$$
begin{align}
d=frac{1}{2}cdot left(m+frac{1}{2}right)cdotfrac{lambda}{n_f}
end{align}
$$
$$
begin{align}
lambda&=frac{2cdot dcdot n_f}{m+frac{1}{2}} \
lambda&=frac{2cdot 1.25times 10^{-7}text{ m}cdot 1.2}{0+frac{1}{2}} \
&boxed{lambda=6times 10^{-7}m}
end{align}
$$
This wavelength is particular for $textbf{reddish-orange color}$.
$$
begin{align}
lambda&=frac{2cdot dcdot n_f}{m+frac{1}{2}} \
lambda&=frac{2cdot 1.25times 10^{-7}text{ m}cdot 1.2}{1+frac{1}{2}} \
&boxed{lambda=2times 10^{-7}m}
end{align}
$$
and $m=2$
$$
begin{align}
lambda&=frac{2cdot dcdot n_f}{m+frac{1}{2}} \
lambda&=frac{2cdot 1.25times 10^{-7}text{ m}cdot 1.2}{2+frac{1}{2}} \
&boxed{lambda=1.2times 10^{-7}m}
end{align}
$$
We can conclude that for $m>0$ wavelengths are $textbf{shorter than $4times 10^{-7}m$}$, the lowest wavelength of light.
$$
begin{align}
{x_{obj}}&=frac{1.22cdotlambdacdot L_{obj}}{D} \
{x_{obj}}&=frac{1.22cdot5.5times10^{-7}text{ m}cdot5times10^{-3}text{ m}cdot}{6.25times10^{-3}text{m}} \
&boxed{x_{obj}=5.37times10^{-7}text{m}}
end{align}
$$
First one has 200 grains per mm which means one grain is $g_1=frac{1}{200}text{ mm}=5times10^{-3}text{ mm}$ wide. The other one is $g_2=frac{1}{50}text{ mm}=2times10^{-2}text{ mm}$ wide. From $a)$ we calculated that the central bright spot is $x_{obj}=5.37times10^{-4}text{ mm}$.
Since the owner wants $x_{obj}<g$, he should buy the less costly film that has $textbf{50 grains per mm}$.
$$
begin{align}
lambda=dcdotsintheta
end{align}
$$
we see that wavelength and angle are proportional. Since wavelength of yellow light $lambda_y=5.8times10^{-7}text{ m}$ is greater than wavelength of blue light $lambda_y=4.5times10^{-7}text{ m}$, the angle at which blue spots appear will be a bit smaller than $pm30^{circ}$.
Also, in the middle, at the angle $pm0^{circ}$, the yellow and blue light will mix and the central spot will be in green color.
$$
begin{align}
2cdot x=frac{2cdot lambdacdot L}{w} \
end{align}
$$
In this equation, we can see that the wavelength and width of the slit are proportional. This means if we replace $lambda$ with $1.5cdotlambda$, width $w$ will become $1.5cdot w$.
We will use The Rayleigh criterion to solve this problem.
begin{align}
{x_{obj}}&=frac{1.22cdotlambdacdot L_{obj}}{D} \
{L_{obj}}&=frac{Dcdot x_{obj}}{1.22cdotlambda} \
{L_{obj}}&=frac{8times10^{-3}text{m}cdot 1.8text{ m}}{1.22cdot 5.25times10^{-7}text{ m}} \
&boxed{L_{obj}=2.25times10^{4}text{m}}
end{align}
$$
The reason we can not see this far can be a refractive feature of the atmosphere but not diffraction, also the construction of our eye that limits the visible distance can be a reason.
He established $textit{the wave theory}$. First, he made $textit{Young’s interference experiment}$ that brought him to $textit{ double-slit experiment}$. With $textit{ double-slit experiment}$ he demonstrated interference in the context of light as a wave.
Also, he proved that it is right to observe light as a wave.
In astronomy, the knowledge about diffraction is used to improve telescopes and astronomy equipment.
The definition of work is
$$
begin{align}
W=Fcdot d
end{align}
$$
Total force is vector sum of buoyancy and gravitational force, so we write
$$
begin{align}
F&={F_b-F_g} \
F&=rho_{water}cdot Vcdot g-rho_{wood}cdot Vcdot g \
F&=1000frac{kg}{m^3}cdot 0.5 m^3 cdot 9.8frac{m}{s^2}-500frac{kg}{m^3}cdot 0.5 m^3cdot 9.8frac{m}{s^2} \
F&=2450N
end{align}
$$
$$
begin{align}
&W=2450Ncdot 4m \
&boxed{W=9800J}
end{align}
$$
W=9800J
$$
The equation we will use here is
$$
begin{align}
c=fcdotlambda
end{align}
$$
$$
begin{align}
&lambda=frac{c}{f} \
&lambda=frac{3times10^8frac{m}{s}}{2.4times10^{9}text{Hz}} \
&boxed{lambda=1.25times10^{-1}m}
end{align}
$$
lambda=1.25times10^{-1}m
$$
These waves in still air would have a wavelength of sound
$$
begin{align}
&lambda=frac{lambda_f+lambda_b}{2} \
&lambda=frac{1m+2m}{2} \
&boxed{lambda=1.5m}
end{align}
$$
$$
begin{align}
f=frac{v}{lambda}
end{align}
$$
So we write
$$
begin{align}
&f=frac{v}{lambda} \
&f=frac{330frac{m}{s}}{1.5m} \
&boxed{f=220s}
end{align}
$$
While sound wave travels $1.5m$, an airplane moves $0.5m$ forward, which means speed of the airplane is three times smaller than the speed of sound.
$$
begin{align}
&v_p=frac{v}{3} \
&boxed{v_p=110frac{m}{s}}
end{align}
$$
$b)$ $f=220s$
$c)$ $v_p=110frac{m}{s}$
Thin lens equation is defined as
$$
begin{align}
frac{1}{f}=frac{1}{d_i}+frac{1}{d_o}
end{align}
$$
But we don’t know the focal length of the mirror.
$$
begin{align}
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{1.2times10^{-2}text{m}cdot 2.4 times10^{-1}text{m}}{1.2times10^{-2}text{m}- 2.4 times10^{-1}text{m}}{} \
&boxed{{d_i}=-2.4times10^{-1}m}
end{align}
$$
$$
begin{align}
frac{h_i}{h_o}&=frac{-d_i}{d_o} \
{h_i}&=frac{-d_i cdot h_o}{d_o} \
{h_i}&=frac{-(-2.18times10^{-2}m) cdot 2times10^{-1}text{m}}{1.2times10^{-2}text{m}} \
&boxed{{h_i}=3.63times10^{-2}m}
end{align}
$$
${h_i}=3.63times10^{-2}m$
$$
begin{align}
frac{1}{f}&=frac{1}{d_i}+frac{1}{d_o} \
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{7.5times10^{-2}text{m}cdot 2.1times10^{-1}text{m}}{7.5times10^{-2}text{m}- 2.1times10^{-1}text{m}} \
&boxed{{d_i}=-1.17times10^{-1}m}
end{align}
$$
$$
begin{align}
frac{h_i}{h_o}&=frac{-d_i}{d_o} \
{h_i}&=frac{-d_i cdot h_o}{d_o} \
{h_i}&=frac{-1.17times10^{-1}m cdot 2times10^{-2}text{m}}{7.5times10^{-1}text{m}} \
&boxed{{h_i}=3.11times10^{-2}m}
end{align}
$$
$$
{h_i}=3.11times10^{-2}m
$$