All Solutions
Page 526: Practice Problems
begin{align}
2cdot x&=frac{2cdot lambdacdot L}{w} \
x&=frac{lambdacdot L}{w} \
x&=frac{5.46times 10^{-7}mcdot 7.5times 10^{-1}text{ m}}{9.5times 10^{-5}m} \
&boxed{x=4.31times 10^{-3}m}
end{align}
$$
x=4.31times 10^{-3}m
$$
begin{align}
2cdot x&=frac{2cdotlambdacdot L}{w} \
L&=frac{2cdot xcdot w}{2cdotlambda} \
L&=frac{2.6times 10^{-2}mcdot 1.1times 10^{-4}m}{2cdot5.89times10^{-7}m} \
&boxed{L=2.43m}
end{align}
$$
L=2.43m
$$
begin{align}
2cdot x&=frac{2cdotlambdacdot L}{w} \
w&=frac{2cdotlambdacdot L}{2cdot x} \
w&=frac{2cdot 6.328times 10^{-7}mcdot 1.15text{ m}}{1.5times 10^{-2}m} \
&boxed{w=9.7times 10^{-5}m}
end{align}
$$
w=9.7times 10^{-5}m
$$
begin{align}
2cdot x&=frac{2cdotlambdacdot L}{w} \
lambda&=frac{2cdot xcdot w}{2cdot L} \
lambda&=frac{2.4times 10^{-2}mcdot 2.95times 10^{-5}m}{2cdot6times10^{-1}m} \
&boxed{lambda=5.9times 10^{-7}m}
end{align}
$$
lambda=5.9times 10^{-7}m
$$
$$
begin{align}
2cdot x=frac{2cdot lambdacdot L}{w} \
end{align}
$$
we know that width is proportional to wavelength so if $lambda_r>lambda_b$, red light will produce the wider band
$$
begin{align}
2cdot x_b&=frac{2cdot lambda_bcdot L}{w} \
2cdot x_b&=frac{2cdot 4.41times 10^{-7}mcdot 1text{ m}}{5times 10^{-5}m} \
&boxed{2cdot x_b=1.76times 10^{-2}m}
end{align}
$$
$$
begin{align}
2cdot x_r&=frac{2cdot lambda_rcdot L}{w} \
2cdot x_r&=frac{2cdot 6.22times 10^{-7}mcdot 1text{ m}}{5times 10^{-5}m} \
&boxed{2cdot x_r=2.49times 10^{-2}m}
end{align}
$$
$$
begin{align}
lambda=dcdotsintheta
end{align}
$$
So we write
$$
begin{align}
d=frac{lambda}{sintheta}
end{align}
$$
But we don’t know $theta$.
$$
begin{align}
tantheta&=frac{x}{L} \
theta&=arctan {frac{x}{L}}
end{align}
$$
$$
begin{align}
d&=frac{lambda}{sin{left(arctan {frac{x}{L}}right)}} \
d&=frac{4.34times10^{-7}text{ m}}{sin{left(arctan {frac{5.5times 10^{-1}text{ m}}{1.05text{ m}}}right)}} \
&boxed{d=9.35times 10^{-7}m}
end{align}
$$
d=9.35times 10^{-7}m
$$
$$
begin{align}
lambda=dcdotsintheta
end{align}
$$
From basic geometry, we can conclude
$$
begin{align}
tantheta=frac{x}{L}
end{align}
$$
We need to find the separation of the lines in the diffraction pattern, $x$.
$$
begin{align}
theta=arcsin{frac{lambda}{d}}
end{align}
$$
and (2).
$$
begin{align}
x&=Lcdottantheta \
x&=Lcdottan{left( arcsin{frac{lambda}{d}} right)} \
x&=8times 10^{-1}text{ m}cdottan{left( arcsin{frac{4.21times10^{-7}text{ m}}{8.6times 10^{-7}text{ m}}} right)} \
&boxed{x=4.49times 10^{-1}m}
end{align}
$$
x=4.49times 10^{-1}m
$$
$$
begin{align}
lambda=dcdotsintheta
end{align}
$$
and from basic geometry we can conclude
$$
begin{align}
tantheta&=frac{x}{L} \
theta&=arctan {frac{x}{L}}
end{align}
$$
begin{align}
lambda&=dcdotsin{left(arctan {frac{x}{L}} right)} \
lambda&=7.41times 10^{-7}text{ m}cdotsin{left(arctan {frac{5.8times 10^{-1}text{ m}}{6.5times 10^{-1}text{ m}}} right)} \
&boxed{lambda=4.93times 10^{-7}m}
end{align}
$$
lambda=4.93times 10^{-7}m
$$
$$
begin{align}
lambda=dcdotsintheta
end{align}
$$
and from basic geometry we can conclude
$$
begin{align}
tantheta&=frac{x}{L} \
theta&=arctan {frac{x}{L}}
end{align}
$$
begin{align}
d&=frac{lambda}{sin{left(arctan {frac{x}{L}}right)}} \
d&=frac{6.32times10^{-7}text{ m}}{sin{left(arctan {frac{5.6times 10^{-2}text{ m}}{5.5times10^{-1}text{ m}}}right)}} \
d&=6.24times 10^{-6}m \
d&=6.24times 10^{-4}cm
end{align}
$$
$$
begin{align}
frac{1 slit}{d}&=frac{1 slit}{6.24times 10^{-4}cm} \
&boxed{frac{1 slit}{d}=1.6times 10^{3}frac{slit}{cm}}
end{align}
$$
frac{1 slit}{d}=1.6times 10^{3}frac{slit}{cm}
$$