All Solutions
Page 523: Section Review
What we need here is the thickness of the thinnest soap film, $n=1.33$, considering the appearance of a bright stripe. The light that is used in this problem has a wavelength $lambda=5.75times10^{-7}text{ m}$
$$
begin{align}
d=frac{1}{2}cdotleft(m+frac{1}{2} right)cdotfrac{lambda}{n_f}
end{align}
$$
$$
begin{align}
d&=frac{1}{2}cdotleft(1+frac{1}{2} right)cdotfrac{5.75times10^{-7}text{ m}}{1.33} \
&boxed{d=3.24times 10^{-7}m}
end{align}
$$
d=3.24times 10^{-7}m
$$
The bright band appears in the places where two waves interfere constructively and the dark band where two waves interfere destructively.


Another situation is when ray goes through a film and hits the air. Since $n<n_f$, on the second reflection there is no phase inversion.
We need to find the thinnest film that reflects yellow-green light.
$$
begin{align}
d=frac{1}{2}cdotleft(m+frac{1}{2} right)cdotfrac{lambda}{n_f}
end{align}
$$
$$
begin{align}
d&=frac{1}{2}cdot 1cdotfrac{5.55times10^{-7}text{ m}}{1.83} \
&boxed{d=7.58times 10^{-8}m}
end{align}
$$
$$
begin{align}
d&=frac{1}{2}cdotleft(1+frac{1}{2} right)cdotfrac{5.55times10^{-7}text{ m}}{1.83} \
&boxed{d=2.27times 10^{-7}m}
end{align}
$$
$b)$ $d=2.27times 10^{-7}m$
$$
begin{align}
sintheta&approxtheta \
tantheta&approxtheta \
sintheta&approxtantheta
end{align}
$$
is defined up to $9.91^{circ}$.
$$
begin{align}
sintheta&approxtheta-frac{theta^3}{3!}+frac{theta^5}{5!}-… \
tantheta&approxtheta-frac{theta^2}{2!}+frac{theta^4}{4!}-… \
end{align}
$$
So the angle changes to $2.99^{circ}$