Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Textbook solutions

All Solutions

Page 513: Standardized Test Practice

Exercise 1
Step 1
1 of 2
$textbf{Given}$

$n_{a}=1$

$n_{w}=1.33$

$theta_{a}=46text{ $^circ$}$

$textbf{Approach}$

In this problem, we will use Snell’s law.

$textbf{Solution}$

The definition of Snell’s law of refraction is

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

so we write

$$
begin{align}
{n_{a}cdotsintheta_{a}}&={n_{w}cdotsintheta_{w}} \
{theta_{w}}&=arcsin{left( frac{n_a}{n_{w}} cdot sintheta_a right)} \
{theta_{w}}&=arcsin{left( frac{1}{1.33} cdot sin 46^circ right)} \
&boxed{{theta_{w}}=33^circ}
end{align}
$$

Result
2 of 2
C) ${theta_{w}}=33^circ$
Exercise 2
Step 1
1 of 2
$textbf{Given}$

$v=1.24times10^8frac{text{ m}}{text{ s}}$

$c=3times10^8frac{text{ m}}{text{ s}}$

$textbf{Approach}$

In this problem, we will use a definition of the index of refraction.

$textbf{Solution}$

The definition of index of refraction is

$$
begin{align}
{n}=frac{c}{v}
end{align}
$$

where indexes $c$ is the speed of light and $v$ is the speed in the medium.

$$
begin{align}
&{n}=frac{3times10^8frac{text{ m}}{text{ s}}}{1.24times10^8frac{text{ m}}{text{ s}}} \
&boxed{{n}=2.42}
end{align}
$$

Result
2 of 2
D) $n=2.42$
Exercise 3
Step 1
1 of 2
Reflection, refraction and dispersion are all involved in the formation of a rainbow, diffraction is not.
Result
2 of 2
A) Diffraction
Exercise 4
Step 1
1 of 2
$textbf{Given}$

$h_{o}=2.25times10^{-2}text{ m}$

$d_{o}=1.86text{ m}$

$f=4.7times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the thin lens equation.

$textbf{Solution}$

Thin lens equation is

$$
begin{align}
frac{1}{f}=frac{1}{d_i}+frac{1}{d_o}
end{align}
$$

so for image position $d_i$ we have

$$
begin{align}
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{1.86mcdot 4.7times10^{-2}m}{1.86m- 4.7times10^{-2}m}{} \
&boxed{{d_i}=4.82times10^{-2}m}
end{align}
$$

Result
2 of 2
C) ${d_i}=4.82 times10^{-2}m$
Exercise 5
Step 1
1 of 2
$textbf{Given}$

$d_{o}=4.15text{ m}$

$d_{i}=5times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of the magnification.

$textbf{Solution}$

The magnification is defined as

$$
begin{align}
m&=frac{-d_i}{d_o} \
end{align}
$$

So we write

$$
begin{align}
{m}&=frac{5times10^{-2}text{ m}}{4.15text{ m}} \
&boxed{{m}=-0.012}
end{align}
$$

Result
2 of 2
B) ${m}=-0.012$
Exercise 6
Step 1
1 of 2
Mirage is optical illusion which can be seen as a result of heating of air near the ground, refraction and reflection. Huygens’ wavelets are not involved in this formation.
Result
2 of 2
B) Huygens’ wavelets
Exercise 7
Step 1
1 of 2
$textbf{Given}$

$d_{o}=-3text{ m}$

$f=-2text{ m}$

$textbf{Approach}$

We will find the solutions by using the thin lens equation and equality.

$textbf{Solution}$

Thin lens equation is defined as

$$
begin{align}
frac{1}{f}=frac{1}{d_i}+frac{1}{d_o}
end{align}
$$

so for image position $d_i$ we have

$$
begin{align}
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{-3mcdot (-2)m}{-3m- (-2)m}{} \
&boxed{{d_i}=-6m}
end{align}
$$

Result
2 of 2
A) ${d_i}=-6m$
Exercise 8
Step 1
1 of 2
$textbf{Given}$

$n_{w}=1.33$

$n_{g}=1.52$

$textbf{Approach}$

In this problem, we are going to use the law of total refraction.

$textbf{Solution}$

The definition of total refraction is

$$
begin{align}
{sin theta_c}=frac{n_2}{n_1}
end{align}
$$

where indexes $1$ and $2$ represent two different mediums. So we write

$$
begin{align}
&{sintheta_{c}}=frac{n_w}{n_g} \
&{theta_{c}}=arcsin{left(frac{n_{w}}{n_{g}}right)} \
&boxed{{theta_{c}}=61{^circ}}
end{align}
$$

Result
2 of 2
D) ${theta_{c}}=61{^circ}$
Exercise 9
Step 1
1 of 2
If we want to make a clear image, we need to let all of the light rays hit the object and reach the screen. If we disable half of the light rays to hit the object, they will not reach the screen, an image will contain only half of the light rays and will be dimmer.
Result
2 of 2
B) the image dims
Exercise 10
Step 1
1 of 2
$textbf{Given}$

$n_{a}=1$

$theta_{c}=24.4text{ $^circ$}$

$theta_{d}=20text{ $^circ$}$

$textbf{Approach}$

We will find the angle of refraction in the air by using the definition of total refraction and Snell’s law.

$textbf{Solution}$

From the definition of total refraction, we will find the index of refraction of a diamond.

$$
begin{align}
{sin theta_c}&=frac{n_2}{n_1} \
{sintheta_{c}}&=frac{n_a}{n_d} \
{n_d}&=frac{n_a}{sintheta_{c}} \
{n_d}&=frac{1}{24.4^circ} \
{n_d}&=2.42
end{align}
$$

Now, we can use Snell’s law and find the angle of refraction in the air.

$$
begin{align}
{n_1cdotsin theta_1}&={n_2cdot sin theta_2} \
{n_{d}cdotsintheta_{d}}&={n_{a}cdotsintheta_{a}} \
{theta_{a}}&=arcsin{left({frac{n_{d}}{n_{a}}cdot sin theta_{d}}right)} \
{theta_{a}}&=arcsin{left({frac{2.42}{1}cdot sin 20^circ}right)} \
&boxed{{theta_{w}}=55{^circ} 52′}
end{align}
$$

Result
2 of 2
$$
{theta_{w}}=55{^circ} 52′
$$
Exercise 11
Step 1
1 of 2
Here we need to find out what type of lens makes the image on a distance $d_{i}=-2.95times10^{-2}text{ m}$ away from the lens if the object is at the distance $d_{o}=6.98times10^{-2}text{ m}$ from a lens.

The type of lens is defined by the focal length.

Step 2
2 of 2
We will find the solutions by considering the definition of the thin lens equation.

$$
begin{align}
frac{1}{f}&=frac{1}{d_i}+frac{1}{d_o} \
{f}&=frac{d_ocdot d_i}{d_o +d_i} \
{f}&=frac{6.98times10^{-2}mcdot 2.95times10^{-2}m}{6.98times10^{-2}m+ (-2.95)times10^{-2}m}{} \
{f}&=-5.11times10^{-2}m
end{align}
$$

Since the focal length is negative, the lens is $textbf{concave}$.

unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New