Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Table of contents
Textbook solutions

All Solutions

Page 513: Standardized Test Practice

Exercise 1
Step 1
1 of 2
$textbf{Given}$

$n_{a}=1$

$n_{w}=1.33$

$theta_{a}=46text{ $^circ$}$

$textbf{Approach}$

In this problem, we will use Snell’s law.

$textbf{Solution}$

The definition of Snell’s law of refraction is

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

so we write

$$
begin{align}
{n_{a}cdotsintheta_{a}}&={n_{w}cdotsintheta_{w}} \
{theta_{w}}&=arcsin{left( frac{n_a}{n_{w}} cdot sintheta_a right)} \
{theta_{w}}&=arcsin{left( frac{1}{1.33} cdot sin 46^circ right)} \
&boxed{{theta_{w}}=33^circ}
end{align}
$$

Result
2 of 2
C) ${theta_{w}}=33^circ$
Exercise 2
Step 1
1 of 2
$textbf{Given}$

$v=1.24times10^8frac{text{ m}}{text{ s}}$

$c=3times10^8frac{text{ m}}{text{ s}}$

$textbf{Approach}$

In this problem, we will use a definition of the index of refraction.

$textbf{Solution}$

The definition of index of refraction is

$$
begin{align}
{n}=frac{c}{v}
end{align}
$$

where indexes $c$ is the speed of light and $v$ is the speed in the medium.

$$
begin{align}
&{n}=frac{3times10^8frac{text{ m}}{text{ s}}}{1.24times10^8frac{text{ m}}{text{ s}}} \
&boxed{{n}=2.42}
end{align}
$$

Result
2 of 2
D) $n=2.42$
Exercise 3
Step 1
1 of 2
Reflection, refraction and dispersion are all involved in the formation of a rainbow, diffraction is not.
Result
2 of 2
A) Diffraction
Exercise 4
Step 1
1 of 2
$textbf{Given}$

$h_{o}=2.25times10^{-2}text{ m}$

$d_{o}=1.86text{ m}$

$f=4.7times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the thin lens equation.

$textbf{Solution}$

Thin lens equation is

$$
begin{align}
frac{1}{f}=frac{1}{d_i}+frac{1}{d_o}
end{align}
$$

so for image position $d_i$ we have

$$
begin{align}
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{1.86mcdot 4.7times10^{-2}m}{1.86m- 4.7times10^{-2}m}{} \
&boxed{{d_i}=4.82times10^{-2}m}
end{align}
$$

Result
2 of 2
C) ${d_i}=4.82 times10^{-2}m$
Exercise 5
Step 1
1 of 2
$textbf{Given}$

$d_{o}=4.15text{ m}$

$d_{i}=5times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of the magnification.

$textbf{Solution}$

The magnification is defined as

$$
begin{align}
m&=frac{-d_i}{d_o} \
end{align}
$$

So we write

$$
begin{align}
{m}&=frac{5times10^{-2}text{ m}}{4.15text{ m}} \
&boxed{{m}=-0.012}
end{align}
$$

Result
2 of 2
B) ${m}=-0.012$
Exercise 6
Step 1
1 of 2
Mirage is optical illusion which can be seen as a result of heating of air near the ground, refraction and reflection. Huygens’ wavelets are not involved in this formation.
Result
2 of 2
B) Huygens’ wavelets
Exercise 7
Step 1
1 of 2
$textbf{Given}$

$d_{o}=-3text{ m}$

$f=-2text{ m}$

$textbf{Approach}$

We will find the solutions by using the thin lens equation and equality.

$textbf{Solution}$

Thin lens equation is defined as

$$
begin{align}
frac{1}{f}=frac{1}{d_i}+frac{1}{d_o}
end{align}
$$

so for image position $d_i$ we have

$$
begin{align}
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{-3mcdot (-2)m}{-3m- (-2)m}{} \
&boxed{{d_i}=-6m}
end{align}
$$

Result
2 of 2
A) ${d_i}=-6m$
Exercise 8
Step 1
1 of 2
$textbf{Given}$

$n_{w}=1.33$

$n_{g}=1.52$

$textbf{Approach}$

In this problem, we are going to use the law of total refraction.

$textbf{Solution}$

The definition of total refraction is

$$
begin{align}
{sin theta_c}=frac{n_2}{n_1}
end{align}
$$

where indexes $1$ and $2$ represent two different mediums. So we write

$$
begin{align}
&{sintheta_{c}}=frac{n_w}{n_g} \
&{theta_{c}}=arcsin{left(frac{n_{w}}{n_{g}}right)} \
&boxed{{theta_{c}}=61{^circ}}
end{align}
$$

Result
2 of 2
D) ${theta_{c}}=61{^circ}$
Exercise 9
Step 1
1 of 2
If we want to make a clear image, we need to let all of the light rays hit the object and reach the screen. If we disable half of the light rays to hit the object, they will not reach the screen, an image will contain only half of the light rays and will be dimmer.
Result
2 of 2
B) the image dims
Exercise 10
Step 1
1 of 2
$textbf{Given}$

$n_{a}=1$

$theta_{c}=24.4text{ $^circ$}$

$theta_{d}=20text{ $^circ$}$

$textbf{Approach}$

We will find the angle of refraction in the air by using the definition of total refraction and Snell’s law.

$textbf{Solution}$

From the definition of total refraction, we will find the index of refraction of a diamond.

$$
begin{align}
{sin theta_c}&=frac{n_2}{n_1} \
{sintheta_{c}}&=frac{n_a}{n_d} \
{n_d}&=frac{n_a}{sintheta_{c}} \
{n_d}&=frac{1}{24.4^circ} \
{n_d}&=2.42
end{align}
$$

Now, we can use Snell’s law and find the angle of refraction in the air.

$$
begin{align}
{n_1cdotsin theta_1}&={n_2cdot sin theta_2} \
{n_{d}cdotsintheta_{d}}&={n_{a}cdotsintheta_{a}} \
{theta_{a}}&=arcsin{left({frac{n_{d}}{n_{a}}cdot sin theta_{d}}right)} \
{theta_{a}}&=arcsin{left({frac{2.42}{1}cdot sin 20^circ}right)} \
&boxed{{theta_{w}}=55{^circ} 52′}
end{align}
$$

Result
2 of 2
$$
{theta_{w}}=55{^circ} 52′
$$
Exercise 11
Step 1
1 of 2
Here we need to find out what type of lens makes the image on a distance $d_{i}=-2.95times10^{-2}text{ m}$ away from the lens if the object is at the distance $d_{o}=6.98times10^{-2}text{ m}$ from a lens.

The type of lens is defined by the focal length.

Step 2
2 of 2
We will find the solutions by considering the definition of the thin lens equation.

$$
begin{align}
frac{1}{f}&=frac{1}{d_i}+frac{1}{d_o} \
{f}&=frac{d_ocdot d_i}{d_o +d_i} \
{f}&=frac{6.98times10^{-2}mcdot 2.95times10^{-2}m}{6.98times10^{-2}m+ (-2.95)times10^{-2}m}{} \
{f}&=-5.11times10^{-2}m
end{align}
$$

Since the focal length is negative, the lens is $textbf{concave}$.

unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: A Physics Toolkit
Section 1.1: Mathematics and Physics
Section 1.2: Measurement
Section 1.3: Graphing Data
Page 24: Assessment
Page 29: Standardized Test Practice
Chapter 3: Accelerated Motion
Section 3.1: Acceleration
Section 3.2: Motion with Constant Acceleration
Section 3.3: Free Fall
Page 80: Assessment
Page 85: Standardized Test Practice
Chapter 4: Forces in One Dimension
Section 4.1: Force and Motion
Section 4.2: Using Newton’s Laws
Section 4.3: Interaction Forces
Page 112: Assessment
Page 117: Standardized Test Practice
Chapter 5: Forces in Two Dimensions
Section 5.1: Vectors
Section 5.2: Friction
Section 5.3: Force and Motion in Two Dimensions
Page 140: Assessment
Page 145: Standardized Test Practice
Chapter 6: Motion in Two Dimensions
Section 6.1: Projectile Motion
Section 6.2: Circular Motion
Section 6.3: Relative Velocity
Page 164: Assessment
Page 169: Standardized Test Practice
Chapter 7: Gravitation
Section 7.1: Planetary Motion and Gravitation
Section 7.2: Using the Law of Universal Gravitation
Page 190: Assessment
Page 195: Standardized Test Practice
Chapter 8: Rotational Motion
Section 8.1: Describing Rotational Motion
Section 8.2: Rotational Dynamics
Section 8.3: Equilibrium
Page 222: Assessment
Page 227: Standardized Test Practice
Chapter 9: Momentum and Its Conservation
Chapter 10: Energy, Work, and Simple Machines
Section 10.1: Energy and Work
Section 10.2: Machines
Page 278: Assessment
Page 283: Standardized Test Practice
Chapter 11: Energy and Its Conservation
Section 11.1: The Many Forms of Energy
Section 11.2: Conservation of Energy
Page 306: Assessment
Page 311: Standardized Test Practice
Chapter 13: State of Matter
Section 13.1: Properties of Fluids
Section 13.2: Forces Within Liquids
Section 13.3: Fluids at Rest and in Motion
Section 13.4: Solids
Page 368: Assessment
Page 373: Standardized Test Practice
Chapter 14: Vibrations and Waves
Section 14.1: Periodic Motion
Section 14.2: Wave Properties
Section 14.3: Wave Behavior
Page 396: Assessment
Page 401: Section Review
Chapter 15: Sound
Section 15.1: Properties of Detection of Sound
Section 15.2: The Physics of Music
Page 424: Assessment
Page 429: Standardized Test Practice
Chapter 17: Reflections and Mirrors
Section 17.1: Reflection from Plane Mirrors
Section 17.2: Curved Mirrors
Page 478: Assessment
Page 483: Standardized Test Practice
Chapter 18: Refraction and lenses
Section 18.1: Refraction of Light
Section 18.2: Convex and Concave Lenses
Section 18.3: Applications of Lenses
Page 508: Assessment
Page 513: Standardized Test Practice
Chapter 21: Electric Fields
Section 21.1: Creating and Measuring Electric Fields
Section 21.2: Applications of Electric Fields
Page 584: Assessment
Page 589: Standardized Test Practice
Chapter 22: Current Electricity
Section 22.1: Current and Circuits
Section 22.2: Using Electric Energy
Page 610: Assessment
Page 615: Standardized Test Practice
Chapter 23: Series and Parallel Circuits
Section 23.1: Simple Circuits
Section 23.2: Applications of Circuits
Page 636: Assessment
Page 641: Standardized Test Practice
Chapter 24: Magnetic Fields
Section 24.1: Magnets: Permanent and Temporary
Section 24.2: Forces Caused by Magnetic Fields
Page 664: Assessment
Page 669: Standardized Test Practice
Chapter 25: Electromagnetic Induction
Section 25.1: Electric Current from Changing Magnetic Fields
Section 25.2: Changing Magnetic Fields Induce EMF
Page 690: Assessment
Page 695: Standardized Test Practice
Chapter 30: Nuclear Physics
Section 30.1: The Nucleus
Section 30.2: Nuclear Decay and Reactions
Section 30.3: The Building Blocks of Matter
Page 828: Assessment
Page 831: Standardized Test Practice