Physics: Principles and Problems
Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Textbook solutions

All Solutions

Page 508: Assessment

Exercise 37
Step 1
1 of 2
Exercise scan
Result
2 of 2
Virtual, inverted, smaller, larger, smaller.
Exercise 38
Step 1
1 of 2
$textbf{Given}$

$n_{g}>n_{a}$

$textbf{Solution}$

The definition of Snell’s law of refraction is

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

so we write

$$
begin{align}
{n_{a}cdotsintheta_{a}}&={n_{g}cdotsintheta_{g}} \
frac{n_{a}}{n_{g}}&=frac{sintheta_{g}}{sintheta_{a}}
end{align}
$$

If $n_{g}>n_{a}$ than the angle of incidence $theta_{a}$ is larger than the angle of refraction $theta_{g}$.

$$
begin{align}
sin&theta_{a}>sintheta_{g} \
&theta_{a}>theta_{g} \
&boxed{theta_{i}>theta_{r}}
end{align}
$$

Result
2 of 2
$$
theta_{i}>theta_{r}
$$
Exercise 39
Step 1
1 of 2
$textbf{Given}$

$n_{g}>n_{a}$

$textbf{Solution}$

The definition of Snell’s law of refraction is

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

so we write

$$
begin{align}
{n_{g}cdotsintheta_{g}}&={n_{a}cdotsintheta_{a}} \
frac{n_{g}}{n_{a}}&=frac{sintheta_{a}}{sintheta_{g}}
end{align}
$$

If $n_{g}>n_{a}$ than the angle of refraction $theta_{a}$ is larger than the angle of incidence $theta_{g}$.

$$
begin{align}
sin&theta_{a}>sintheta_{g} \
&theta_{a}>theta_{g} \
&boxed{theta_{r}>theta_{i}}
end{align}
$$

Result
2 of 2
$$
theta_{r}>theta_{i}
$$
Exercise 40
Step 1
1 of 2
The critical angle $theta_c$ is the angle of incidence for which the refracted light ray lies along the boundary of the two media.

If we look at the Snell’s law, that means that the angle of refraction $theta_2$ is equal to $90^circ$ so we can define the critical angle as

$$
begin{align}
{sintheta_c}=frac{n_2}{n_1}
end{align}
$$

Result
2 of 2
$$
{sintheta_c}=frac{n_2}{n_1}
$$
Exercise 41
Solution 1
Solution 2
Step 1
1 of 2
This Implies that lights of all colors have the same speed in vacuum.
Result
2 of 2
This Implies that lights of all colors have the same speed in vacuum.
Step 1
1 of 3
In this problem, we are asked to explain why light isn’t separated into a spectrum when going through the atmosphere, even though it’s refracted.

We also need to state what this implies about the speeds of different colors of light when traveling through the air.

Step 2
2 of 3
The index of refraction of air differs only slightly from that of vacuum.
Hence, the difference in indices of refraction for different colors is even smaller.

For a sense of scale $n_{text{vacuum}}=1$ and $n_{text{air}} sim 1.0003$

This difference is too small to lead to a separation into a spectrum.

Step 3
3 of 3
**Conclusion**

The fact that there is no separation into a spectrum implies that the speeds of different colors of light when passing through the air are very similar.

Exercise 42
Step 1
1 of 2
The moon looks red during a lunar eclipse because the earth blocks the sun’s rays from the moon. The sunlight that refracts off earth’s atmosphere is directed toward the moon which means that red wavelengths of light will reflect off the moon toward the earth.
Result
2 of 2
The sunlight refracts off earth’s atmosphere and red wavelengths of light reflect off the moon toward the earth.
Exercise 43
Step 1
1 of 2
Convex lens is thicker at the center compared to the boundary. Concave lens is thinner at the center compared to the boundary.
Result
2 of 2
Convex lens is thicker at the center compared to the boundary. Concave lens is thinner at the center compared to the boundary.
Exercise 44
Step 1
1 of 2
If an object is located beyond $2cdot f$ for convex lens, the image will be real, inverted and smaller and located between $f$ and $2cdot f$ on the other side of the lens.
Result
2 of 2
The image is real, inverted and smaller and located between $f$ and $2cdot f$ on the other side of the lens.
Exercise 45
Step 1
1 of 2
Focal length also depends on the index of refraction of the material of lens.
Result
2 of 2
The index of refraction of material.
Exercise 46
Step 1
1 of 2
To invert the image, you’d need another lens in the optics system of the projector. This will help produce an image that is upright.
Result
2 of 2
There is another lens that inverts the image.
Exercise 47
Step 1
1 of 2
Chromatic aberration is an effect that appears in every lens because lenses have defect. A lens refracts different wavelengths of light at slightly different angles, so an object viewed through a lens appears to be ringed with rainbow colors.

This means that image is not focused. To manage the precision in focusing the picture when using precise optical instruments, we use $textbf{achromatic lens}$ which is a system of two or more lenses.

Result
2 of 2
To manage the focused image.
Exercise 48
Step 1
1 of 2
The cornea is the front part of the eye bowl and it refracts the light together with the lens and anterior chamber. Also, eye bowl is
surrounded with eye muscles that help to change the shape of the lens so eye can focus on objects on different positions.
Result
2 of 2
With the cornea, lens, anterior chamber and the eye muscles.
Exercise 49
Step 1
1 of 2
In case of nearsightedness, the focal length of the eye is too short to focus the light on the retina.

To correct this we use concave lens.

Result
2 of 2
In case of nearsightedness.
Exercise 50
Step 1
1 of 2
Objective lens in a refracting telescope produces a real and inverted image.
Result
2 of 2
The image is real and inverted.
Exercise 51
Step 1
1 of 2
When the objective lenses are closer, we get the depth in image. This means the three-dimensionality of the image is increased.
Result
2 of 2
Because the three-dimensionality of the image is increased.
Exercise 52
Step 1
1 of 2
The reflex mirror reflects light coming from lens to the viewer. When the shutter button is pressed the mirror flips and the light goes directly to the sensor and photo is captured. This is useful because, in this method, we can actually use the same lens for viewing and capturing the photo, thus giving us opportunity to preview exact same image that is going to be captured.
Result
2 of 2
So the lens is used for both, viewing and capturing the photo.
Exercise 53
Step 1
1 of 2
$textbf{Given}$

$theta_{B}>theta_{A}$

$textbf{Approach}$

In this problem we are going to use Snell’s law.

$textbf{Solution}$

The definition of Snell’s law of refraction is

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

so we write

$$
begin{align}
{n_{A}cdotsintheta_{A}}&={n_{B}cdotsintheta_{B}} \
frac{n_{A}}{n_{B}}&=frac{sintheta_{B}}{sintheta_{A}}
end{align}
$$

From the picture we see that $theta_{B}>theta_{A}$ which means that the index of refraction of substance A, $theta_{A}$, is larger than the index of refraction of substance B, $theta_{B}$.

$$
begin{align}
&boxed{n_{A}>n_{B}}
end{align}
$$

Result
2 of 2
$$
n_{A}>n_{B}
$$
Exercise 54
Step 1
1 of 2
If there is no refraction, the light will go through the boundary of two media unchanged. This can happen, in the first place, when an angle of incidence is equal to zero $textbf{$theta_1=0^circ$}$. Also, instead of being refracted, a light ray can be reflected if the angle of incidence is greater than the critical angle $textbf{$theta_1>theta_C$}$. This is called total internal reflection.
Result
2 of 2
For $theta_1=0^circ$ and $theta_1>theta_C$.
Exercise 55
Step 1
1 of 1
The definition of the index of refraction is

$$
begin{align}
{n}=frac{c}{v}
end{align}
$$

where indexes $c$ is the speed of light and $v$ is the speed in the medium.

Now we write

$$
begin{align}
{v}=frac{c}{n}
end{align}
$$

Since the speed of light in a vacuum $c$ is constant, if the index of refraction of a material $n$ is increased, the speed of light in the material $v$ will be decreased.

Exercise 56
Step 1
1 of 1
The definition for the critical angle for total internal reflection is

$$
begin{align}
sintheta_{c}=frac{n_2}{n_1}
end{align}
$$

so the critical angle is

$$
begin{align}
theta_{c}=arcsin{left(frac{n_2}{n_1}right)}
end{align}
$$

Let’s say that one medium is air $n_a=1$ so for other one we have $n_a<n_m$.

In first situation let's say we have $n_1=n_a$ and $n_2=n_m$. Here we can easely see that (2) does not exist.

Now, we say $n_2=n_a$ and $n_1=n_m$. This solution exists and since the ciritcal angle is inversely proportional to $n_1$, it increases as the index $n_1$ decreases.

Exercise 57
Step 1
1 of 2
$textbf{Given}$

$n_{a}=1$

$n_{w}=1.33$

$n_{g}=1.52$

$textbf{Approach}$

In this problem we will use the definition for the critical angle for total internal reflection.

$textbf{Solution}$

The definition for the critical angle for total internal reflection is

$$
begin{align}
sintheta_{C}=frac{n_2}{n_1}
end{align}
$$

so we the critical angle is

$$
begin{align}
theta_{C}=arcsin{left(frac{n_2}{n_1}right)}
end{align}
$$

In the first place, lets see the critical angle for air and water.

$$
begin{align}
theta_{C,a-w}&=arcsin{left(frac{n_a}{n_w}right)} \
theta_{C,a-w}&=arcsin{left(frac{1}{1.33}right)} \
theta_{C,a-w}&=48^circ 45′
end{align}
$$

Now, we calculate the critical angle for air and glass in the same way.

$$
begin{align}
theta_{C,a-g}&=arcsin{left(frac{n_a}{n_g}right)} \
theta_{C,a-g}&=arcsin{left(frac{1}{1.52}right)} \
theta_{C,a-g}&=41^circ 8′
end{align}
$$

Now, we see that the critical angle for air and glass $theta_{C,a-g}$ is smaller that the critical angle for air and water $theta_{C,a-w}$.

$$
begin{align}
boxed{theta_{C,a-g}<theta_{C,a-w}}
end{align}
$$

Result
2 of 2
$$
theta_{C,a-g} < theta_{C,a-w}
$$
Exercise 58
Step 1
1 of 2
The light ray is reflecting off the crack and as a result we see the silvery line. If the light reflects off a crack, it does not refract in the air in a crack so the angle of incidence is larger than the critical angle.

$$
begin{align}
sintheta_{i}>sintheta_{c}=frac{n_a}{n_g}
end{align}
$$

Step 2
2 of 2
Exercise scan
Exercise 59
Solution 1
Solution 2
Step 1
1 of 2
Greenland is below the horizon and is visible as a mirage because of the refraction of light through the layers of the atmosphere.
Result
2 of 2
Because of the refraction of light.
Step 1
1 of 5
In this problem, we are asked to explain how mirages at sea may have helped in the discovery of Greenland(according to legend)
Step 2
2 of 5
**Mirage on a hot road**

Remember first the mirage that occurs when traveling on a hot road or in the desert.

Because of its high temperature, the ground keeps the air above it warm. This means that the air closer to the ground has a smaller refractive index than the higher air.

Step 3
3 of 5
This leads to light bending upward, towards the cooler air with a greater refractive index. And so we see pools of water in the ground.
Step 4
4 of 5
**Mirage at sea**

Well in the case of the sea, the air closer to the surface is cooler than the air above it. This means that its refractive index is larger.

So light traveling above the surface will actually bend towards the surface. This is the opposite of what occurs on a hot road.

Step 5
5 of 5
So objects are perceived to be higher than they actually are.

This means that something that is actually located below the horizon could be seen!
Light coming from the yet distant Greenland would bend while traveling through the atmosphere, and reach the eye of the observer.

Exercise 60
Step 1
1 of 2
First, let’s see the definition of wavelength

$$
begin{align}
{lambda}=frac{v}{f}
end{align}
$$

We can also write it like

$$
begin{align}
v=lambda cdot f
end{align}
$$

where $lambda$ is wavelength, $v$ is the speed of light in a medium and $f$ is the frequency of light.

Violet light has smaller wavelength and frequency than red light, so it travels slower than the red light.

Result
2 of 2
Violet light has smaller wavelength and frequency than red light.
Exercise 61
Step 1
1 of 3
We see a rainbow when sunlight gets reflected and scattered from the water droplet which is on the opposite side of the Sun. Now in the northern hemisphere, the Sun is in the southern direction. That is why we can’t see a rainbow in the southern direction.
Step 2
2 of 3
In the southern hemisphere we have to look in the southern direction to see a rainbow.
Result
3 of 3
In the southern direction.
Exercise 62
Step 1
1 of 3
The image position only depends on the object position and focal length of the lens producing the image. It does not depend on the size of the image. So the image position will be the same.
Step 2
2 of 3
Since the lens will collect more light, the brightness of the image will increase.
Result
3 of 3
The image position only depends on the object position and focal length of the lens.

The brightness of the image will increase.

Exercise 63
Step 1
1 of 2
$textbf{Given}$

$n_{a}=1$

$n_{w}=1.33$

$n_{g}=1.52$

$textbf{Solution}$

Here we have two situations. First, refraction in system air-glass and second, in system water-glass.

Magnification is proportional to the refraction. The difference between indexes of refraction $n_w$ and $n_g$ is much smaller than the difference between $n_a$ and $n_w$ which means that refraction for system water-glass is smaller.

Result
2 of 2
The magnification is proportional to the refraction respectively difference between indexes of refraction.
Exercise 64
Step 1
1 of 1
Refracted index of the light depends on the wavelength of the light. So the different colors of light will be focused in different positions while going through the lens. Hence we see chromatic aberration.

Reflection, that happens on mirrors, does not depend on the refractive index. Hence the reflection does not depend on the wavelength and hence no chromatic aberration.

Exercise 65
Step 1
1 of 1
When light coming from the smaller aperture, the aberration is less compared to the case when the light coming from the larger aperture. Since the aberration is less, the focusing will be better.
Exercise 66
Step 1
1 of 1
Since the image formed is upright by objective and the image we see through the eyepiece is also upright. So the distance between the real image formed by the objective and the eyepiece lens must be less than the focal length of the lens of the eyepiece. So the real image will be formed between the focus of the objective and eyepiece lens.
|
Exercise 67
Step 1
1 of 2
$textbf{Given}$

$theta_{1}=30text{ $^circ$}$

$theta_{2}=22text{ $^circ$}$

$n_{a}=1$

$textbf{Approach}$

In this problem we are going to use Snell’s law.

$textbf{Solution}$

$a)$ The definition of Snell’s law of refraction is

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

so we write

$$
begin{align}
{n_{a}cdotsintheta_{a}}&={n_{l}cdotsintheta_{l}} \
{n_l}&={n_a}cdot frac{sintheta_{a}}{sintheta_{l}} \
{n_l}&=1cdot frac{sin 30^circ}{sin 22^circ} \
&boxed{{n_l}=1.33}
end{align}
$$

$b)$ Due to solution in $a)$, the liquid from in this problem is $textbf{water}$.

Result
2 of 2
$a)$ ${n_l}=1.33$

$b)$ It is water.

Exercise 68
Step 1
1 of 2
$textbf{Given}$

$n_{fg}=1.62$

$n_{e}=1.36$

$theta_{e}=25text{ $^circ$}$

$textbf{Approach}$

In this problem we will use Snell’s law.

$textbf{Solution}$

$a)$ The definition of Snell’s law of refraction is

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

so we write

$$
begin{align}
{n_{fg}cdotsintheta_{fg}}&={n_{e}cdotsintheta_{e}} \
{theta_{fg}}&=arcsin{left( frac{n_e}{n_{fg}} cdot sintheta_e right)} \
{theta_{fg}}&=arcsin{left( frac{1.36}{1.62} cdot sin 25^circ right)} \
&boxed{{theta_{fg}}=20^circ47′}
end{align}
$$

Result
2 of 2
$$
{theta_{fg}}=20^circ47′
$$
Exercise 69
Step 1
1 of 2
$textbf{Given}$

$n_{a}=1$

$n_{g}=1.5$

$n_{w}=1.33$

$theta_{a}=40text{ $^circ$}$

$textbf{Approach}$

In this problem we will use Snell’s law.

$textbf{Solution}$

$a)$ The definition of Snell’s law of refraction is

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

so we write

$$
begin{align}
{n_{a}cdotsintheta_{a}}&={n_{g}cdotsintheta_{g}} \
{theta_{g}}&=arcsin{left( frac{n_g}{n_{a}} cdot sintheta_a right)} \
{theta_{g}}&=arcsin{left( frac{1}{1.5} cdot sin 40^circ right)} \
&boxed{{theta_{g}}=25^circ 22′}
end{align}
$$

$b)$ Now, we have the same problem but with two different media.

$$
begin{align}
{n_{g}cdotsintheta_{g}}&={n_{w}cdotsintheta_{w}} \
{theta_{w}}&=arcsin{left( frac{n_g}{n_{w}} cdot sintheta_g right)} \
{theta_{w}}&=arcsin{left( frac{1.5}{1.33} cdot sin 25^circ 22′ right)} \
&boxed{{theta_{w}}=28^circ 54′}
end{align}
$$

Result
2 of 2
$a)$ ${theta_{g}}=25^circ 22’$

$b)$ ${theta_{w}}=28^circ 54’$

Exercise 70
Step 1
1 of 2
$textbf{Given}$

$n=2.42$

$c=3times10^8frac{text{ m}}{text{ s}}$

$textbf{Approach}$

In this problem we will use a definition of index of refraction.

$textbf{Solution}$

The definition of index of refraction is

$$
begin{align}
{n}=frac{c}{v}
end{align}
$$

where indexes $c$ is the speed of light and $v$ is the speed in the medium.

$$
begin{align}
&{v}=frac{c}{n} \
&{v}=frac{3times10^8frac{ m}{ s}}{2.42} \
&boxed{{v}=1.24times10^8frac{ m}{ s} }
end{align}
$$

Result
2 of 2
$$
{v}=1.24times10^8frac{ m}{ s}
$$
Exercise 71
Step 1
1 of 2
$textbf{Given}$

$n_{a}=1$

$n_{d}=2.42$

$textbf{Approach}$

In this problem we will use the definition for the critical angle.

$textbf{Solution}$

The definition for the critical angle for total internal reflection is

$$
begin{align}
sintheta_{C}=frac{n_2}{n_1}
end{align}
$$

so the critical angle is

$$
begin{align}
&theta_{C}=arcsin{left(frac{1}{2.42}right)} \
&boxed{theta_{C}=24^circ 24′}
end{align}
$$

Result
2 of 2
$$
theta_{C}=24^circ 24′
$$
Exercise 72
Step 1
1 of 2
$textbf{Given}$

$n_{w}=1.33$

$n_{p}=1.5$

$theta_{e}=35text{ $^circ$}$

$textbf{Approach}$

In this problem we will use Snell’s law.

$textbf{Solution}$

The definition of Snell’s law of refraction is

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

First, the light ray goes from fish through water to the plastic sheet, so we write

$$
begin{align}
{n_{w}cdotsintheta_{w}}&={n_{p}cdotsintheta_{p}} \
{theta_{p}}&=arcsin{left( frac{n_w}{n_{p}} cdot sintheta_w right)} \
{theta_{p}}&=arcsin{left( frac{1.33}{1.5} cdot sin 35^circ right)} \
{theta_{p}}&=30^circ34′
end{align}
$$

Then, it goes through the plastic sheet in the air.

$$
begin{align}
{n_{p}cdotsintheta_{p}}&={n_{a}cdotsintheta_{a}} \
{theta_{a}}&=arcsin{left( frac{n_p}{n_{a}} cdot sintheta_p right)} \
{theta_{a}}&=arcsin{left( frac{1.5}{1} cdot sin 30^circ 34’right)} \
&boxed{{theta_{a}}=49^circ43′}
end{align}
$$

Result
2 of 2
$$
{theta_{a}}=49^circ43′
$$
Exercise 73
Step 1
1 of 2
$textbf{Given}$

$d=1.5text{m}$

$h=2text{m}$

$n_{a}=1$

$n_{w}=1.33$

$textbf{Approach}$

In this problem, we will use Snell’s law and trigonometry.

$textbf{Solution}$

$a)$ To find the angle at which light leaves the water, first we need to find the angle of incidence in the water.

$$
begin{align}
{tan theta_w}&=frac{d}{h} \
{theta_w}&=arctan {left( frac{1.5m}{2m}right)} \
{theta_{w}}&=36.87^circ
end{align}
$$

Now, from the definition for Snell’s law, we can find the angle of refraction

$$
begin{align}
{n_{w}cdotsintheta_{w}}&={n_{a}cdotsintheta_{a}} \
{theta_{a}}&=arcsin{left( frac{n_w}{n_{a}} cdot sintheta_w right)} \
{theta_{a}}&=arcsin{left( frac{1.33}{1} cdot sin 36.87^circ right)} \
&boxed{{theta_{a}}=52.94^circ}
end{align}
$$

$b)$ When we watch the light from angle $theta_{a}$, we will have the feeling that a light source is not placed on $2m$ beneath the water but on the $h_i$.

$$
begin{align}
{tan theta_a}&=frac{d}{h_i} \
{h_i}&=frac{d}{tan theta_a} \
{h_i}&=frac{1.5m}{tan 52.94^circ } \
&boxed{h_i=1.13m}
end{align}
$$

Since $h_i<h$, the light viewed from angle $theta_i$ will appear shallower than it actually is.

Result
2 of 2
$a)$ $theta_{a}=52.94^circ$

$b)$ Shallower.

Exercise 74
Step 1
1 of 2
$textbf{Given}$

$n_{r}=2.41$

$n_{b}=2.45$

$n_{a}=1$

$lambda_{r}=656text{nm}$

$lambda_{b}=434text{nm}$

$theta_{w}=30text{ $^circ$}$

$textbf{Approach}$

In this problem, we will use Snell’s law.

$textbf{Solution}$

Lights of different wavelenght will refract at different angles.We will strat with a definition for Snell’s law.

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

For first situation we write

$$
begin{align}
{n_{a}cdotsintheta_{a}}&={n_{r}cdotsintheta_{r}} \
{theta_{r}}&=arcsin{left( frac{n_a}{n_{r}} cdot sintheta_a right)} \
{theta_{r}}&=arcsin{left( frac{1}{2.41} cdot sin 30^circ right)} \
&boxed{{theta_{r}}=11.97^circ}
end{align}
$$

And for situation with blue light, we have

$$
begin{align}
{n_{a}cdotsintheta_{a}}&={n_{b}cdotsintheta_{b}} \
{theta_{b}}&=arcsin{left( frac{n_a}{n_{b}} cdot sintheta_a right)} \
{theta_{b}}&=arcsin{left( frac{1}{2.45} cdot sin 30^circ right)} \
&boxed{{theta_{b}}=11.77^circ}
end{align}
$$

Result
2 of 2
${theta_{r}}=11.97^circ$

$$
{theta_{b}}=11.77^circ
$$

Exercise 75
Step 1
1 of 2
$textbf{Given}$

$n_{r}=1.51$

$n_{v}=1.53$

$c=3times10^8frac{text{ m}}{text{ s}}$

$textbf{Approach}$

In this problem, we will use a definition of the index of refraction.

$textbf{Solution}$

$a)$ The definition of index of refraction is

$$
begin{align}
{n}=frac{c}{v}
end{align}
$$

We need to calculate the speed of violet light so we write

$$
begin{align}
&{v_v}=frac{c}{n} \
&{v_v}=frac{3times10^8frac{ m}{ s} }{1.53} \
&boxed{{v_v}=1.96times10^8frac{ m}{ s}}
end{align}
$$

$b)$ We do the same for red light.

$$
begin{align}
&{v_r}=frac{c}{n} \
&{v_r}=frac{3times10^8frac{ m}{ s} }{1.51} \
&boxed{{v_r}=1.99times10^8frac{ m}{ s}}
end{align}
$$

Result
2 of 2
${v_v}=1.96times10^8frac{ m}{ s}$

$$
{v_r}=1.99times10^8frac{ m}{ s}
$$

Exercise 76
Step 1
1 of 2
$textbf{Given}$

$theta_c=41text{$^circ$}$

$n_{a}=1$

$n_{w}=1.33$

$textbf{Approach}$

In this problem, we will use the definition for the critical angle for total internal reflection.

$textbf{Solution}$

The definition for the critical angle for total internal reflection is

$$
begin{align}
sintheta_{c}=frac{n_2}{n_1}
end{align}
$$

First, we need to find the index of refraction for a special glass.

$$
begin{align}
sintheta_{c,a}&=frac{n_a}{n_g} \
{n_g}&=frac{n_a}{sintheta_{c,a}} \
n_g&=1.52
end{align}
$$

Now, when we know $n_g$, we can find the solution.

$$
begin{align}
sintheta_{c,w}&=frac{n_w}{n_g} \
theta_{c,w}&=arcsin{left(frac{n_w}{n_g}right)} \
&boxed{theta_{c,w}=61.04^circ}
end{align}
$$

Result
2 of 2
$$
theta_{c,w}=61.04^circ
$$
Exercise 77
Step 1
1 of 2
$textbf{Given}$

$theta_i=55text{$^circ$}$

$n_{a}=1$

$n_{w}=1.33$

$textbf{Approach}$

In this problem, we will use Snell’s law.

$textbf{Solution}$

The definition of Snell’s law of refraction is

$$
begin{align}
{n_1cdotsin theta_1}={n_2cdot sin theta_2}
end{align}
$$

so we write

$$
begin{align}
{n_{w}cdotsintheta_{w}}&={n_{a}cdotsintheta_{a}} \
{theta_{a}}&=arcsin{left( frac{n_w}{n_{a}} cdot sintheta_w right)} \
{theta_{w}}&=arcsin{left( frac{1.33}{1} cdot sin 55^circ right)} \
&boxed{{theta_{w}}=arcsin{1.09}}
end{align}
$$

The value for $sin$ is defined from $0$ to $1$ which means that here we have a total internal reflection.

Result
2 of 2
${theta_{w}}$ does not exist.
Exercise 78
Step 1
1 of 4
$textbf{Given}$

$theta_a=45text{$^circ$}$

$n_{a}=1$

$n_{g}=1.5$

$textbf{Approach}$

In this problem, we will use Snell’s law and elementary geometry.

$textbf{Solution}$

$a)$ The definition of Snell’s law of refraction is

$$
begin{align}
{n_1sin theta_1}={n_2 sin theta_2}
end{align}
$$

Since the prism is made of glass, we write

$$
begin{align}
{n_{a}cdotsintheta_{a}}&={n_{g}cdotsintheta_{g}} \
{theta_{g}}&=arcsin{left( frac{n_a}{n_{g}} cdot sintheta_a right)} \
{theta_{g}}&=arcsin{left( frac{1}{1.5} cdot sin 45^circ right)} \
&boxed{{theta_{g}}={28.13^circ}}
end{align}
$$

Step 2
2 of 4
$b)$ Here, we will look at the geometry of prism and consider angles $alpha=60^circ$ and angles near $P$

$$
begin{align}
&{theta_P}={90^circ}-theta_2 \
&{theta_P}={90^circ}-{28.13^circ} \
&{theta_P}=61.86^circ
end{align}
$$

and $Q$.

$$
begin{align}
&{theta_Q}={180^circ}-theta_P-{60^circ} \
&{theta_Q}={180^circ}-{61.86^circ}-{60^circ} \
&{theta_Q}=58.14^circ
end{align}
$$

And in the end we have solution

$$
begin{align}
&{theta_1′}={90^circ}-theta_Q \
&{theta_1′}={90^circ}-{58.14^circ} \
&boxed{{theta_1′}=31.86^circ}
end{align}
$$

Step 3
3 of 4
$c)$ Now we have $theta_1’$, which represents the angle of incidence in glass prism, so we can calculate $theta_2’$, the angle of refraction in the air.

$$
begin{align}
{n_{g}cdotsintheta_{g}}&={n_{a}cdotsintheta_{a}} \
{theta_2′}&=arcsin{left( frac{n_a}{n_{g}} cdot sintheta_1′ right)} \
{theta_2′}&=arcsin{left( frac{1.5}{1} cdot sin 31.86^circ right)} \
&boxed{{theta_2′}={52.35^circ}}
end{align}
$$

Result
4 of 4
$a)$ ${theta_{g}}={28.13^circ}$

$b)$ ${theta_1′}=31.86^circ$

$c)$ ${theta_2′}={52.35^circ}$

Exercise 79
Step 1
1 of 2
$textbf{Given}$

$n_{a}=1$

$theta_a=22text{$^circ$}$

$v_{p}=1.9times10^8frac{text{ m}}{text{ s}}$

$c=3times10^8frac{text{ m}}{text{ s}}$

$textbf{Approach}$

In this problem, we will use a definition of the index of refraction and Snell’s law.

$textbf{Solution}$

Let’s start with the definition of index of refraction

$$
begin{align}
{n}&=frac{c}{v} \
{n_p}&=frac{c}{v_p} \
{n_p}&=frac{3times10^8 frac{m}{s}}{1.9times10^8 frac{m}{s}} \
{n_p}&=1.57
end{align}
$$

From Snell’s law, we can find a solution.

$$
begin{align}
{n_{a}cdotsintheta_{a}}&={n_{p}cdotsintheta_{p}} \
{theta_{p}}&=arcsin{left( frac{n_a}{n_{p}} cdot sintheta_a right)} \
{theta_{p}}&=arcsin{left( frac{1}{1.57} cdot sin 22^circ right)} \
&boxed{{theta_{g}}=13.8^circ}
end{align}
$$

Result
2 of 2
$$
{theta_{g}}=13.8^circ
$$
Exercise 80
Step 1
1 of 5
What we have here is an angle of incidence of $45^circ$. The ray enters a block of crown glass, index of refraction of $1.52$, from the air $n_a=1$ and refracts to the upper side of a block. Here it can refract again to the right side of a block where a ray will leave a block or the angle of incidence can be a critical angle.
Step 2
2 of 5
To know how to properly draw a ray diagram, we need to calculate all angles of refraction and incidence.

Firs we start with a Snell’s law where we use $theta_i=45^circ$.

$$
begin{align}
{n_1cdot sin theta_1}&={n_2cdot sin theta_2} \
{n_{a}cdotsintheta_{a}}&={n_{g}cdotsintheta_{g}} \
{theta_{g}}&=arcsin{left( frac{n_a}{n_{g}} cdot sintheta_a right)} \
{theta_{g}}&=arcsin{left( frac{1}{1.52} cdot sin 45^circ right)} \
theta_{g}&=27^circ43′
end{align}
$$

Step 3
3 of 5
Now, from the basic geometry, we know that the next angle of incidence ($?$ in the picture) can be calculated easily.

$$
begin{align}
90^circ&=theta_{g,r}+theta_{g,i} \
theta_{g,i}&=90^circ-27^circ43′ \
theta_{g,i}&=62^circ27′
end{align}
$$

But, is this angle a critical angle, an angle of refraction or an angle of reflection?

Exercise scan

Step 4
4 of 5
We will find it out by defining the critical angle.

$$
begin{align}
sintheta_{c}&=frac{n_a}{n_g} \
theta_{c}&=arcsin{left(frac{n_a}{n_g}right)} \
theta_{c}&=arcsin{left(frac{1}{1.52}right)} \
theta_{c}&=41^circ8′
end{align}
$$

Step 5
5 of 5
Since $theta_c<theta_{g,i}$, in this point, we are talking about reflection so a ray leaves the upper side of a block at the angle $theta_{g,i}=62^circ27'$ and goes to the right side at the angle $theta_{g}=27^circ43'$. We can conclude that light leaves the block in the same angle as it came in $theta_r=45^circ$.

Exercise scan

Exercise 81
Step 1
1 of 1
From the picture we can conclude that the image is at the same distance from the lens as the object, so our solution is $d_i=34cm$

Exercise scan

Exercise 82
Step 1
1 of 2
$textbf{Given}$

$d_{o}=72.5times10^{-2}text{ m}$

$f=25.5times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of thin lens equation.

$textbf{Solution}$

Thin lens equation is defined as

$$
begin{align}
frac{1}{f}=frac{1}{d_i}+frac{1}{d_o}
end{align}
$$

so for image position $d_i$ we have

$$
begin{align}
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{72.5times10^{-2}mcdot 25.5times10^{-2}m}{72.5times10^{-2}m- 25.5times10^{-2}m}{} \
&boxed{{d_i}=39.34times10^{-2}m}
end{align}
$$

Result
2 of 2
${d_i}=39.34 times10^{-2}m$
Exercise 83
Step 1
1 of 2
$textbf{Given}$

$d_{o}=10times10^{-2}text{ m}$

$f=5times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of thin lens equation.

$textbf{Solution}$

Thin lens equation is defined as

$$
begin{align}
frac{1}{f}=frac{1}{d_i}+frac{1}{d_o}
end{align}
$$

so for image position $d_i$ we have

$$
begin{align}
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{10times10^{-2}mcdot 5times10^{-2}m}{10times10^{-2}m- 5times10^{-2}m}{} \
&boxed{{d_i}=10times10^{-2}m}
end{align}
$$

Result
2 of 2
${d_i}=10 times10^{-2}m$
Exercise 84
Step 1
1 of 2
$textbf{Given}$

$m=-0.75$

$d_{i}=24times10^{-2}text{ m}$

$f=5.5times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of the thin lens equation and the definition of the magnification.

$textbf{Solution}$

The magnification is defined as the ratio of positions.

$$
begin{align}
{m}&=frac{-d_i}{d_o}
end{align}
$$

The magnification is negative because an image is located on the other side of the lens than the object.

$$
begin{align}
{d_o}&=frac{-d_i}{m} \
{d_o}&=frac{-24times10^{-2}m}{-0.75} \
{d_o}&=32times10^{-2}m
end{align}
$$

Thin lens equation is defined as

$$
begin{align}
frac{1}{f}=frac{1}{d_i}+frac{1}{d_o}
end{align}
$$

so for focal length $f$ we have

$$
begin{align}
{f}&=frac{d_ocdot d_i}{d_o + d_i} \
{f}&=frac{32times10^{-2}mcdot 24times10^{-2}m}{32times10^{-2}m+24times10^{-2}m} \
&boxed{{f}=13.71times10^{-2}m}
end{align}
$$

Result
2 of 2
${f}=13.71times10^{-2}m$
Exercise 85
Step 1
1 of 1
Exercise scan
Exercise 86
Step 1
1 of 2
$textbf{Given}$

$h_{o}=3times10^{-2}text{ m}$

$d_{o}=22times10^{-2}text{ m}$

$d_{i}=11times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the equality of ratios of image and object height and position respectively the magnification.

$textbf{Solution}$

Let’s start with equality of ratios of image and object height and position

$$
begin{align}
frac{h_i}{h_o}&=frac{-d_i}{d_o} \
{h_i}&=frac{-d_i cdot h_o}{d_o} \
{h_i}&=frac{-11times10^{-2}m cdot 3times10^{-2}m}{22times10^{-2}m} \
{h_i}&=-1.5times10^{-2}m \
&boxed{{mid h_i mid}=1.5times10^{-2}m}
end{align}
$$

Minus in solution means that the image is inverted.

Result
2 of 2
${mid h_i mid}=1.5times10^{-2}m$
Exercise 87
Step 1
1 of 3
$textbf{Given}$

$h_{o}=3times10^{-2}text{ m}$

$d_{o}=15times10^{-2}text{ m}$

$d_{i}=10times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of the thin lens equation and equality of ratios of image and object height and position respectively the definition of the magnification.

$textbf{Solution}$

$a)$ To find the focal length we will use the thin lens equation.

$$
begin{align}
frac{1}{f}=frac{1}{d_i}+frac{1}{d_o}
{f}&=frac{d_ocdot d_i}{d_o + d_i} \
{f}&=frac{15times10^{-2}mcdot 10times10^{-2}m}{15times10^{-2}m+ 10times10^{-2}m}{} \
&boxed{f=6times10^{-2}m}
end{align}
$$

Step 2
2 of 3
$b)$ Here we need to find the image position, size and orientation with a new focal length $f_n=2cdot f$.

$$
begin{align}
{f_n}&=2cdot{6m} \
{f_n}&=12m
end{align}
$$

Now, we use equation for thin lens.

$$
begin{align}
{d_{i,n}}&=frac{d_ocdot f_n}{d_o -f_n} \
{d_{i,n}}&=frac{15times10^{-2}mcdot 12times10^{-2}m}{15times10^{-2}m- 12times10^{-2}m}{} \
&boxed{{d_{i,n}}=60times10^{-2}m}
end{align}
$$

In the end, when we have new position of image, we can find size.

$$
begin{align}
frac{h_i}{h_o}&=frac{-d_{i,n}}{d_o} \
{h_{i,n}}&=frac{-d_{i,n} cdot h_o}{d_o} \
{h_{i,n}}&=frac{-60times10^{-2}m cdot 3times10^{-2}m}{15times10^{-2}m} \
&boxed{{h_{i,n}}=-12times10^{-2}m}
end{align}
$$

Minus in solution means that image is $textbf{inverted}$.

Result
3 of 3
$a)$ $f=6times10^{-2}m$

$b)$ ${d_{i,n}}=60 times10^{-2}m$ and ${h_{i,n}}=-12times10^{-2}m$ (Image is inverted.)

Exercise 88
Step 1
1 of 3
$textbf{Given}$

$h_{i}=2times10^{-2}text{ m}$

$d_{i}=-5times10^{-2}text{ m}$

$f=-15times,
10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of thin lens equation and equality of ratios of image and object height and position respectively the definition of the magnification.

$textbf{Solution}$

$a)$ To find the position of the image we will use the thin lens equation. The object is placed on the opposite side and here we have a diverging lens, that is why $d_i$ and $f$ have negative signs.

$$
begin{align}
frac{1}{f}&=frac{1}{d_i}+frac{1}{d_o} \
{d_o}&=frac{d_icdot f}{d_i -f} \
{d_o}&=frac{-5times10^{-2}mcdot (-15)times10^{-2}m}{-5times10^{-2}m- (-15)times10^{-2}m} \
&boxed{{d_o}=7.5times10^{-2}m}
end{align}
$$

We will find a new position from the equality of ratios of image and object height and position.

$$
begin{align}
frac{h_i}{h_o}&=frac{-d_i}{d_o} \
{h_{o}}&=frac{-d_o cdot h_i}{d_i} \
{h_{o}}&=frac{-7.5times10^{-2}m cdot 2times10^{-2}m}{-5times10^{-2}m} \
&boxed{h_{o}=3times10^{-2}m}
end{align}
$$

Step 2
2 of 3
$b)$ If we change lens to a converging one, a new focal length will be $f_n=-f$ respectively $f=15times 10^{-2}$.

Now, we use equation for thin lens.

$$
begin{align}
frac{1}{f}=frac{1}{d_i}+frac{1}{d_o} \
{d_{i,n}}&=frac{d_ocdot f_n}{d_o -f_n} \
{d_{i,n}}&=frac{7.5times10^{-2}mcdot 15times10^{-2}m}{7.5times10^{-2}m- 15times10^{-2}m} \
&boxed{{d_{i,n}}=-15times10^{-2}m}
end{align}
$$

In the end, when we have new position of image, we can find size.

$$
begin{align}
frac{h_i}{h_o}&=frac{-d_{i,n}}{d_o} \
{h_{i,n}}&=frac{-d_{i,n} cdot h_o}{d_o} \
{h_{i,n}}&=frac{-(-15)times10^{-2}m cdot 3times10^{-2}m}{7.5times10^{-2}m} \
&boxed{{h_{i,n}}=6times10^{-2}m}
end{align}
$$

Image is $textbf{virtual and upright}$.

Result
3 of 3
$a)$ ${d_o}=7.5 times10^{-2}m$ and ${h_o}=3times10^{-2}m$

$b)$ ${d_{i,n}}=-15times10^{-2}m$ and ${h_{i,n}}=6times10^{-2}m$ (Image is upright and virtual.)

Exercise 89
Step 1
1 of 2
$textbf{Given}$

$a)$ $d_{o}=3text{ m}$

$f=5text{ m}$

$b)$ $d_{o}=125text{ m}$

$f=1text{ m}$

$textbf{Approach}$

We will find solutions by using the definition of the thin lens equation.

$textbf{Solution}$

$a)$ To find the position of the image we will use the thin lens equation.

$$
begin{align}
frac{1}{f}&=frac{1}{d_i}+frac{1}{d_o} \
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{3mcdot 5times10^{-2}m}{3m- 5times10^{-2}m} \
&boxed{{d_i}=5.08times10^{-2}m}
end{align}
$$

$b)$ Here, we do the same as in $a)$.

$$
begin{align}
frac{1}{f}&=frac{1}{d_i}+frac{1}{d_o} \
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{125mcdot 1m}{125m- 1m} \
&boxed{{d_i}=1.01m}
end{align}
$$

Result
2 of 2
$a)$ ${d_i}=5.08times10^{-2}m$

$b)$ ${d_i}=1.01m$

Exercise 90
Step 1
1 of 2
$textbf{Given}$

$d_{o}=25times10^{-2}text{ m}$

$d_{i}=-45times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of the thin lens equation.

$textbf{Solution}$

To find the focal length we will use the thin lens equation.

$$
begin{align}
frac{1}{f}&=frac{1}{d_i}+frac{1}{d_o} \
{f}&=frac{d_ocdot d_i}{d_o + d_i} \
{f}&=frac{25times10^{-2}mcdot (-45)times10^{-2}m}{25times10^{-2}m+ (-45)times10^{-2}m}{} \
&boxed{f=56.25times10^{-2}m}
end{align}
$$

Result
2 of 2
$$
f=56.25times10^{-2}m
$$
Exercise 91
Step 1
1 of 2
$textbf{Given}$

$f=25times10^{-2}text{ m}$

$d_{o}=40times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of the thin lens equation and equality of ratios of image and object height and position respectively the definition of the magnification.

$textbf{Solution}$

$a)$ To find the focal length we will use the thin lens equation.

$$
begin{align}
frac{1}{f}&=frac{1}{d_i}+frac{1}{d_o} \
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{40times10^{-2}mcdot 25times10^{-2}m}{40times10^{-2}m- 25times10^{-2}m}{} \
&boxed{{d_i}=66.67times10^{-2}m}
end{align}
$$

$b)$ The copy represents the size of image $h_i$.

$$
begin{align}
frac{h_i}{h_o}&=frac{-d_i}{d_o} \
{h_i}&=frac{-d_i cdot h_o}{d_o} \
{h_i}&=frac{-66.67times10^{-2}m cdot h_o}{40times10^{-2}m} \
&boxed{{h_i}=-1.67cdot h_o}
end{align}
$$

The image is $textbf{inverted and enlarged}$.

Result
2 of 2
$a)$ ${d_i}=66.67times10^{-2}m$

$b)$ ${h_i}=-1.67cdot h_o$ (The image is inverted and enlarged.)

Exercise 92
Step 1
1 of 2
Since the distance object are considered at the infinite distance, so we can consider that lights are coming parallel, hence the light will be focused at the focus of the lens. Since the focal length of the lens is 35 mm, the real image will be formed at 35 mm distance from the lens.
Result
2 of 2
The real image will be formed at $d_i=f$.
Exercise 93
Step 1
1 of 5
$textbf{Given}$

$a)$

$f=1times10^{-2}text{ m}$

$d_{o}=1.2times10^{-2}text{ m}$

$c)$

$f=2times10^{-2}text{ m}$

$d_{o}=1times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of the thin lens equation and equality of ratios of image and object height and position respectively the definition of the magnification.

$textbf{Solution}$

$a)$ To find the focal length we will use the thin lens equation.

$$
begin{align}
frac{1}{f}&=frac{1}{d_i}+frac{1}{d_o} \
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{1.2times10^{-2}mcdot 1times10^{-2}m}{1.2times10^{-2}m- 1times10^{-2}m}{} \
&boxed{{d_i}=6times10^{-2}m}
end{align}
$$

Step 2
2 of 5
$b)$ Here, we use the definition of magnification.

$$
begin{align}
&m=frac{-d_i}{d_o} \
&m=frac{-6times10^{-2}m}{1.2times10^{-2}m} \
&boxed{m=-5}
end{align}
$$

Step 3
3 of 5
$c)$ We will solve this in the same way as $a)$, but the real image will represent an object.

$$
begin{align}
frac{1}{f}&=frac{1}{d_i}+frac{1}{d_o} \
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{1times10^{-2}mcdot 2times10^{-2}m}{1times10^{-2}m- 2times10^{-2}m}{} \
&boxed{{d_i}=-2times10^{-2}m}
end{align}
$$

Minus in the solution means that an image is also beneath the eyepiece.

Step 4
4 of 5
$d)$ $m_d$ represents magnification of real iamge.

$$
begin{align}
&{m_d}=frac{-d_i}{d_o} \
&{m_d}=frac{-(-2)times10^{-2}m}{1times10^{-2}m} \
&{m_d}=2
end{align}
$$

Total magnification is a multiplication of the magnification of the image in $b$ and the magnification of the real image from $c)$.

$$
begin{align}
&{m_{tot}}={m_d}cdot m \
&{m_{tot}}=2cdot(-5) \
&boxed{m_{tot}=-10}
end{align}
$$

Result
5 of 5
$a)$ ${d_i}=6times10^{-2}m$

$b)$ $m=-5$

$c)$ ${d_i}=-2times10^{-2}m$

$d)$ $m_{tot}=-10$

Exercise 94
Step 1
1 of 4
$textbf{Given}$

$a)$

$f=20times10^{-2}text{ m}$

$h_{o}=10times10^{-2}text{ m}$

$d_{o}=425times10^{-2}text{ m}$

$b)$

$l=25times10^{-2}text{ m}$

$f_n=4.05times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of the thin lens equation and equality of ratios of image and object height and position respectively the definition of the magnification.

$textbf{Solution}$

$a)$ To find the image position we will use the thin lens equation.

$$
begin{align}
frac{1}{f}&=frac{1}{d_i}+frac{1}{d_o} \
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{425times10^{-2}mcdot 20times10^{-2}m}{425times10^{-2}m- 20times10^{-2}m} \
&boxed{{d_i}=20.99times10^{-2}m}
end{align}
$$

To find the height we will use equality of ratios of image and object height and position.

$$
begin{align}
frac{h_i}{h_o}&=frac{-d_i}{d_o} \
{h_i}&=frac{-d_i cdot h_o}{d_o} \
{h_i}&=frac{-20.99times10^{-2}m cdot 10times10^{-2}m}{425times10^{-2}m} \
&boxed{{h_i}=-0.49times10^{-2}m}
end{align}
$$

The image is $textbf{real and inverted}$.

Step 2
2 of 4
$b)$ $d_{o,n}$ represents new position of new object object.

$$
begin{align}
d_{o,n}&=l-{d_i} \
d_{o,n}&=25times10^{-2}m-21times10^{-2}m \
d_{o,n}&=4times10^{-2}m \
end{align}
$$

Since the object changed, all parameters in lens equation have to change.

$$
begin{align}
frac{1}{f_n}&=frac{1}{d_{i,n}}+frac{1}{d_{o,n}} \
{d_{i,n}}&=frac{d_{o,n}cdot f_n}{d_{o,n} -f_n} \
{d_{i,n}}&=frac{4times10^{-2}mcdot 4.05times10^{-2}m}{4times10^{-2}m- 4.05times10^{-2}m} \
&boxed{{d_{i,n}}=-324times10^{-2}m}
end{align}
$$

New high of object $h_{o,n}$ is equal to image high $h_i$ in $a)$.

$$
begin{align}
frac{h_{i,n}}{h_{o,n}}&=frac{-d_{i,n}}{d_{o,n}} \
{h_{i,n}}&=frac{-d_{i,n} cdot h_{o,n}}{d_{o,n}} \
{h_{i,n}}&=frac{-(324)times10^{-2}m cdot (-0.49)times10^{-2}m}{4times10^{-2}m} \
&boxed{{h_{i,n}}=-39.69times10^{-2}m}
end{align}
$$

The image is $textbf{virtual and inverted}$.

Step 3
3 of 4
$c)$ Here we use the definition of magnification.

$$
begin{align}
&{m}=frac{h_{i,n}}{h_o} \
&{m}=frac{-39.69times10^{-2}m}{10times10^{-2}m} \
&boxed{{m}=-3.97}
end{align}
$$

Result
4 of 4
$a)$ $d_i=20.99times10^{-2}m$, ${h_i}=-0.49times10^{-2}m$ (The image is real and inverted.)

$b)$ $d_{i,n}=-324times10^{-2}m$, ${h_{i,n}}=-39.69times10^{-2}m$ (The image is virtual and inverted.)

$c)$ $m=-3.97$

Exercise 95
Step 1
1 of 2
$textbf{Given}$

$theta_{c}=45text{ $^circ$}$

$n_{a}=1$

$textbf{Approach}$

In this problem, we will use the definition for the critical angle for total internal reflection.

$textbf{Solution}$

The definition for the critical angle for total internal reflection is

$$
begin{align}
sintheta_{c}=frac{n_2}{n_1}
end{align}
$$

so we write

$$
begin{align}
sintheta_{c}&=frac{n_a}{n_g} \
{n_g}&=frac{n_a}{sintheta_{c}} \
{n_g}&=frac{1}{sin45^circ} \
&boxed{n_g=1.41}
end{align}
$$

Result
2 of 2
$$
n_g=1.41
$$
Exercise 96
Step 1
1 of 2
$textbf{Given}$

$n=2.35$

$c=3times10^8frac{text{ m}}{text{ s}}$

$textbf{Approach}$

In this problem, we will use a definition of the index of refraction.

$textbf{Solution}$

The definition of index of refraction is

$$
begin{align}
{n}=frac{c}{v}
end{align}
$$

We need to calculate the speed of light in medium, so we write

$$
begin{align}
&{v}=frac{c}{n} \
&{v}=frac{3times10^8frac{text{ m}}{text{ s}}}{2.35} \
&boxed{{v}=1.28times10^8frac{ m}{text{ s}}}
end{align}
$$

Result
2 of 2
$$
{v}=1.28times10^8frac{ m}{text{ s}}
$$
Exercise 97
Step 1
1 of 2
$textbf{Given}$

$h_{o}=3times10^{-2}text{ m}$

$d_{o}=20times10^{-2}text{ m}$

$d_{i}=10times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of the thin lens equation.

$textbf{Solution}$

Thin lens equation is defined as

$$
begin{align}
frac{1}{f}=frac{1}{d_i}+frac{1}{d_o}
end{align}
$$

so for focal length we write

$$
begin{align}
{f}&=frac{d_ocdot d_i}{d_o +d_i} \
{f}&=frac{20times10^{-2}mcdot 10times10^{-2}m}{20times10^{-2}m +10times10^{-2}m}{} \
&boxed{{f}=6.67times10^{-2}m}
end{align}
$$

Result
2 of 2
$$
{f}=6.67 times10^{-2}m
$$
Exercise 98
Step 1
1 of 2
The definition of Snell’s law of refraction is

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

We want to achieve

$$
begin{align}
{n}=cdot frac{sin theta_1}{sin theta_2}
end{align}
$$

(2) can be written like that only if $n_2=n_{air}$ respectievly $n_2=1$ and $n_1=n$.

Result
2 of 2
$n_2=1$ and $n_1=n$.
Exercise 99
Step 1
1 of 2
$textbf{Given}$

$n=1.33$

$d=1.5times10^{11}text{m}$

$c=3times10^8frac{text{ m}}{text{ s}}$

$textbf{Approach}$

In this problem, we will use a definition of the index of refraction and equation for speed.

$textbf{Solution}$

First, we will find time for light to travel from Sun to the Earth trough vacuum.

$$
begin{align}
{t_v}&=frac{d}{c} \
{t_v}&=frac{1.5times10^{11}text{m}}{3times10^8frac{text{ m}}{text{ s}}} \
{t_v}&=500{s}
end{align}
$$

Now, to find the speed trough water we need the definition of index of refraction

$$
begin{align}
{n}&=frac{c}{v} \
{v}&=frac{c}{n} \
{v}&=frac{3times10^8frac{text{ m}}{text{ s}}}{1.33} \
{v}&=2.26times10^8frac{ m}{text{ s}}
end{align}
$$

and same equation as (1)

$$
begin{align}
{t_w}&=frac{d}{v} \
{t_w}&=frac{1.5times10^{11}text{m}}{2.26times10^8frac{text{ m}}{text{ s}}} \
{t_w}&=663.72s
end{align}
$$

Our solution is difference between (2) and (4).

$$
begin{align}
{Delta t}&={t_w – t_v} \
{Delta t}&={663s – 500s} \
&boxed{{Delta t}=163.72s}
end{align}
$$

Result
2 of 2
$$
{Delta t}=163.72s
$$
Exercise 100
Step 1
1 of 2
$textbf{Given}$

$d_{o}=35times10^{-2}text{ m}$

$d_{i}=1.9times10^{-4}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of the thin lens equation.

$textbf{Solution}$

Thin lens equation is defined as

$$
begin{align}
frac{1}{f}=frac{1}{d_i}+frac{1}{d_o}
end{align}
$$

so for focal length we write

$$
begin{align}
{f}&=frac{d_ocdot d_i}{d_o +d_i} \
{f}&=frac{35times10^{-2}mcdot 1.9times10^{-4}m}{35times10^{-2}m +1.9times10^{-4}m}{} \
&boxed{{f}=1.9times10^{-4}m}
end{align}
$$

Result
2 of 2
$$
{f}=1.9times10^{-4}m
$$
Exercise 101
Step 1
1 of 3
$textbf{Given}$

$n_{w}=1.33$

$n_{a}=1$

$d=12times10^{-2}text{ m}$

$theta_{w}=5text{ $^circ$}$

$textbf{Approach}$

In this problem, we will use Snell’s law and basic trigonometry.

$textbf{Solution}$

$a)$ The definition of Snell’s law of refraction is

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

so we write

$$
begin{align}
{n_{a}cdotsintheta_{a}}&={n_{w}cdotsintheta_{w}} \
{theta_{a}}&=arcsin{left( frac{n_w}{n_{a}} cdot sintheta_w right)} \
{theta_{a}}&=arcsin{left( frac{1.33}{1} cdot sin 5^circ right)} \
&boxed{{theta_{a}}=6^circ39′}
end{align}
$$

Step 2
2 of 3
$b)$ If you look into the water, the bottom will look like it is shallower and on the depth $d_n$. $l$ is the horizontal distance between the point where the light goes from the bottom and the point where light leaves the water.

$$
begin{align}
tan 5^circ&=frac{l}{d} \
tan theta_2&=frac{l}{d_n} \
tan 6^circ39’&=frac{l}{d_n}
end{align}
$$

When we equalize (3) and (4), we have the solution $d_n$.

$$
begin{align}
{d}cdot tan 5^circ &={d_n}cdot tan 6^circ39′ \
{d_n}&=dcdot frac{tan 5^circ}{tan 6^circ39′} \
{d_n}&=12times10^{-2}{ m}cdot frac{tan 5^circ}{tan 6^circ39′} \
&boxed{{d_n}=9times10^{-2}m}
end{align}
$$

Now, we need to compare two depths with indexes of refraction.

$$
begin{align}
frac{d_n}{d}&=frac{9times10^{-2}}{12times10^{-2}}=0.75 \
frac{n_a}{n_w}&=frac{1}{1.33}=0.75 \
&boxed{frac{d_n}{d}=frac{n_a}{n_w}}
end{align}
$$

Result
3 of 3
$a)$ ${theta_{w}}=6^circ39’$

$b)$ ${d_n}=9times10^{-2}m$, $frac{d_n}{d}=frac{n_a}{n_w}$

Exercise 102
Step 1
1 of 2
$textbf{Given}$

$n_{g}=1.5$

$n_{a}=1$

$theta_{a}=theta_1=90text{ $^circ$}$

$textbf{Approach}$

In this problem, we will use Snell’s law.

$textbf{Solution}$

We need to prove that if light ray acts like it is shown in the picture, angle $theta_1’$ will not be the critical angle. Let’s start with the definition of Snell’s law of refraction.

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

For the first refraction we write

$$
begin{align}
{n_{a}cdotsintheta_{a}}&={n_{g}cdotsintheta_{g}} \
{theta_{g}}&=arcsin{left( frac{n_a}{n_{g}} cdot sintheta_a right)} \
{theta_{g}}&=arcsin{left( frac{1}{1.5} cdot sin 90^circ right)} \
&boxed{{theta_{g}}=41^circ49′}
end{align}
$$

Where $theta_2=theta_g$.

Using knowledge of geometry we can calculate $theta_1’$.

$$
begin{align}
{theta_1′}&={90^circ}-{theta_2} \
{theta_1′}&=48^circ11′
end{align}
$$

Now, let’s find a critical angle from the definition.

$$
begin{align}
theta_{c}&=arcsin{left(frac{n_a}{n_g}right)} \
theta_{c}&=arcsin{left(frac{1}{1.5}right)} \
theta_{c}&=41^circ49′
end{align}
$$

We can conclude from the fact $theta_{c}<{theta_1'}$ that light will not leave the glass, actually it will reflect back into the glass.

Result
2 of 2
The light will not leave the glass.
Exercise 103
Step 1
1 of 2
Using the basic geometry we can conclude that the distance we are searching for is $d$.

Exercise scan

Step 2
2 of 2
Now, from the sine law we can find $d$.

$$
begin{align}
frac{15mm}{sin 90^circ}&=frac{d}{sin 45^circ} \
d&=frac{15mm cdot sin 45^circ}{sin 90^circ} \
&boxed{d=10.6mm}
end{align}
$$

Exercise 104
Step 1
1 of 2
$textbf{Given}$

$n_{a}=1.0003$

$n_{g,b}=1.7708$

$n_{g,r}=1.7273$

$theta_{a}=45text{ $^circ$}$

$textbf{Approach}$

In this problem we will use Snell’s law.

$textbf{Solution}$

The angle of dispersion will be different for red end blue light. Let’s start with the definition of Snell’s law of refraction.

$$
begin{align}
{n_1cdot sin theta_1}={n_2cdot sin theta_2}
end{align}
$$

For blue light we write

$$
begin{align}
{n_{a}cdotsintheta_{a}}&={n_{g,b}cdotsintheta_{g,b}} \
{theta_{g,b}}&=arcsin{left( frac{n_a}{n_{g,b}} cdot sintheta_a right)} \
{theta_{g,b}}&=arcsin{left( frac{1.0003}{1.7708} cdot sin 45^circ right)} \
&boxed{{theta_{g,b}}=23^circ32′}
end{align}
$$

For red light we write

$$
begin{align}
{n_{a}cdotsintheta_{a}}&={n_{g,r}cdotsintheta_{g,r}} \
{theta_{g,r}}&=arcsin{left( frac{n_a}{n_{g,r}} cdot sintheta_a right)} \
{theta_{g,r}}&=arcsin{left( frac{1.0003}{1.7273} cdot sin 45^circ right)} \
&boxed{{theta_{g,r}}=24^circ10′}
end{align}
$$

Result
2 of 2
${theta_{g,b}}=23^circ32’$

$$
{theta_{g,r}}=24^circ10′
$$

Exercise 105
Step 1
1 of 2
$textbf{Given}$

$n_{a}=1$

$n_{i}=1.31$

$textbf{Approach}$

In this problem, we will use the definition for the critical angle.

$textbf{Solution}$

The definition for the critical angle for total internal reflection is

$$
begin{align}
sintheta_{c}=frac{n_2}{n_1}
end{align}
$$

so we have

$$
begin{align}
sintheta_{c}&=frac{n_a}{n_i} \
theta_{c}&=arcsin{left(frac{n_a}{n_i}right)} \
theta_{c}&=arcsin{left(frac{1}{1.31}right)} \
&boxed{theta_{c}=49^circ46′}
end{align}
$$

The index of refraction of glass is $n=1.54$ and it is greater than the index of the ice. Because of that, the critical angle for glass will be smaller which means more light rays will reflect back into the cable, and $textbf{the glass is a better}$ material for fiber-optic cables.

Result
2 of 2
$theta_{c}=49^circ46’$ (The glass is a better.)
Exercise 106
Step 1
1 of 2
$textbf{Given}$

$h_{i}=4times10^{-2}text{ m}$

$d_{i}=25times10^{-2}text{ m}$

$f=-15times10^{-2}text{ m}$

$d_{o,n}=-10times10^{-2}text{ m}$

$textbf{Approach}$

We will find the solutions by using the definition of the thin lens equation and magnification.

$textbf{Solution}$

$h_i$ and $d_i$ represent information about the image produced by the convex lens. After we put a concave lens between the convex lens and its image, the image becomes an object for the concave lens. Because of that, information for the object and image of the concave lens will be written with index $n$.
Let’s start with thin lens equation.

$$
begin{align}
frac{1}{f}&=frac{1}{d_i}+frac{1}{d_o} \
{d_{i,n}}&=frac{d_{o,n}cdot f}{d_{o,n} -f} \
{d_{i,n}}&=frac{-15times10^{-2}mcdot (-10)times10^{-2}m}{-10times10^{-2}m- (-15)times10^{-2}m}{} \
&boxed{{d_{i,n}}=30times10^{-2}m}
end{align}
$$

The ratio of high of image and object is equal to negative ratio of theirs positions.

$$
begin{align}
frac{h_{i,n}}{h_{o,n}}&=frac{-d_{i,n}}{d_{o,n}} \
{h_{i,n}}&=frac{-d_{i,n} cdot h_{o,n}}{d_{o,n}} \
{h_{i,n}}&=frac{-30times10^{-2}m cdot 4times10^{-2}m}{-10times10^{-2}m} \
&boxed{{h_{i,n}}=12times10^{-2}m}
end{align}
$$

The result is positive which means the orientation of image is not changed.

Result
2 of 2
${d_{i,n}}=30 times10^{-2}m$

${h_{i,n}}=12times10^{-2}m$

Exercise 107
Step 1
1 of 2
Chromatic aberration is an effect caused by the dispersion of white light. The index of refraction varies with a wavelength, so when white light hits the edge of the prism or lens it refracts. Since the white light contains lights with different wavelengths, all of them will refract at slightly different angles and make the rainbow-colored fringe.
Result
2 of 2
Chromatic aberration.
Exercise 108
Step 1
1 of 1
If we want to make a clear image, we need to let all of the light rays hit the object and reach the screen. If we disable half of the light rays to hit the object, they will not reach the screen, an image will contain only half of the light rays and will be dimmer.
Exercise 109
Step 1
1 of 1
Different pupils in animals mean different visions. Hunters that hunt during the day have vertical slit pupils. They have better depth perception and night vision.

Also, animals who are active during the day and have to be on alert all the time, have wide horizontal pupils. It makes them see a wide field of vision.

For example, eagles can see clearly eight times as far as humans can, deers and horses see wider than humans, and deepwater fishes have eyes with few cone cells so they can see in the darkness of a deep sea,

Exercise 110
Step 1
1 of 2
An overhead projector is constructed of a box with a light source whose light diffuses from the spherical mirror. On the top of the box is a Fresnel lens, here we put a paper for projection, which focuses light rays that go to the projecting lens. Projecting lens increases the image of a paper and projects it on the screen.
Step 2
2 of 2
Exercise scan
Exercise 111
Step 1
1 of 2
$textbf{Given}$

$h=1.5text{ m}$

$m=2text{ kg}$

$Delta T=10text{$K$}$

$g=9.8 frac{text{ m}}{text{ $s^2$}}$

$C=130frac{text{ J}}{text{ $kg K$}}$

$textbf{Approach}$

We will solve this problem with the definition of gravitation potential energy and the heat equation.

$textbf{Solution}$

When we drop the bag, its potential energy changes.

$$
begin{align}
PE&=mcdot gcdot h \
PE&={2kg}cdot {9.8 frac{m}{s^2}}cdot {1.5m} \
PE&={29.4 J}
end{align}
$$

To change the temperature by $10^circ C$, the bag needs to receive $Delta Q$ heat.

$$
begin{align}
Delta Q&=mcdot Ccdot Delta T \
Delta Q&={2kg}cdot 130 frac{J}{kgcdot K}cdot {10 K} \
end{align}
$$

The number of drops is the ratio of half of $PE$ and $Q$.

$$
begin{align}
N&=frac{Q}{frac{1}{2}cdot PE} \
N&=frac{2600J}{frac{1}{2}cdot 29.4 J} \
&boxed{N=177}
end{align}
$$

Result
2 of 2
$$
N=177
$$
Exercise 112
Step 1
1 of 2
$textbf{Given}$

$L_{1}=1text{ m}$

$L_{2}=0.995text{ m}$

$alpha_{iron}=12times 10^{-6}frac{text{ 1}}{text{ $^circ C$}}$

$textbf{Approach}$

Here we will use the definition of linear thermal expansion.

$textbf{Solution}$

The definition of linear thermal expansion is

$$
begin{align}
Delta L=alphacdot LcdotDelta T
end{align}
$$

Where $Delta L={L_1}-{L_2}$ and $L$ is the diameter of the iron hoop.

$$
begin{align}
Delta L&=alpha_{iron}cdot {L_2}cdotDelta T \
Delta T&=frac{Delta L}{alpha_{iron}cdot L_2} \
Delta T&=frac{1m-0.995m}{12times10^{-6}frac{1}{^circ C}cdot 0.995m} \
&boxed{Delta T=419^circ C}
end{align}
$$

Result
2 of 2
$$
Delta T=419^circ C
$$
Exercise 113
Step 1
1 of 2
Due to Doppler’s effect, pedestrian will hear sound with higher frequency $f$.

$$
begin{align}
f=f_0cdotleft(1+frac{Delta v}{c} right)
end{align}
$$

Where $c$ is the speed of sound in a vacuum, $Delta v$ is the speed of a car and $f_0$ is the frequency of the horn. As the car slows down, the frequency $f$ will decrease.

Result
2 of 2
The pedestrian will hear sound with higher frequency.
Exercise 114
Step 1
1 of 5
$a)$ Here we need to compare the force that acts on us (mass $m$) if we could stand on the surface of the Sun (radius $R$, mass $M$) and if we would move to the position $r=1000cdot R$.

$$
begin{align}
{F_r}&={F_R} \
frac{Gcdot Mcdot m}{R^2}&=frac{Gcdot Mcdot m}{r^2} \
frac{Gcdot Mcdot m}{R^2}&=frac{Gcdot Mcdot m}{1000^2cdot R^2}
end{align}
$$

We conclude

$$
begin{align}
&boxed{frac{F_R}{F_r}=10^6}
end{align}
$$

Therefore, a force that would act on us on the Sun’s surface is $10^6$ times larger than a force that would act on us at the distance $r$.

Step 2
2 of 5
$b)$ The definition of the point source illuminance is

$$
begin{align}
E=frac{P}{4cdotpicdot r^2}
end{align}
$$

Here, $P$ represents the power of a source, the Sun. We can use the same logic as we did in $a)$.

Step 3
3 of 5
$$
begin{align}
{E_r}&={E_R} \
frac{P}{4cdotpicdot r^2}&=frac{P}{4cdotpicdot R^2} \
frac{P}{4cdotpicdot 1000^2cdot R^2}&=frac{1}{4cdotpicdot R^2} \
&boxed{frac{E_R}{E_r}=10^6}
end{align}
$$

Therefore, an illuminance on the distance $R$ is $10^6$ times larger than a force on the distance $r$.

Step 4
4 of 5
$c)$ As it was shown in $a)$ and $b)$, the gravitation and illuminance affect the body on the surface $10^6$ times more than on the distance $1000cdot R$.
Result
5 of 5
$a)$ $frac{F_R}{F_r}=10^6$

$b)$ $frac{E_R}{E_r}=10^6$

$c)$ See the explanation.

Exercise 115
Step 1
1 of 4
$a)$

Exercise scan

Step 2
2 of 4
$b)$ At the picture in $a)$ we showed that the image of customer’s nose ($h_{o}=3times10^{-2}text{ m}$) that is $d_{o}=6times10^{-2}text{ m}$ away from the concave mirror with focal length $f=6times10^{-2}text{ m}$ will be larger and on the other side of the mirror. Now, let’s calculate the distance from Snell’s law and the dimension of the image from the magnification.
Step 3
3 of 4
$$
begin{align}
frac{1}{f}&=frac{1}{d_i}+frac{1}{d_o} \
{d_i}&=frac{d_ocdot f}{d_o -f} \
{d_i}&=frac{6times10^{-2}mcdot 14times10^{-2}m}{6times10^{-2}m- 14times10^{-2}m}{} \
&boxed{{d_i}=-10.5times10^{-2}m}
end{align}
$$

$$
begin{align}
frac{h_i}{h_o}&=frac{-d_i}{d_o} \
{h_i}&=frac{-d_i cdot h_o}{d_o} \
{h_i}&=frac{-(-10.5)times10^{-2}m cdot 3}{6times10^{-2}m} \
&boxed{{h_i}=5.25times10^{-2}m}
end{align}
$$

Result
4 of 4
$b)$ ${d_i}=-10.5times10^{-2}m$ and ${h_i}=5.25times10^{-2}m$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New