Physics: Principles and Problems
9th Edition
Elliott, Haase, Harper, Herzog, Margaret Zorn, Nelson, Schuler, Zitzewitz
ISBN: 9780078458132
Textbook solutions
Chapter 1: A Physics Toolkit
Section 1.1: Mathematics and Physics
Section 1.2: Measurement
Section 1.3: Graphing Data
Page 24: Assessment
Page 29: Standardized Test Practice
Page 5: Practice Problems
Page 10: Section Review
Page 18: Practice Problems
Page 19: Section Review
Chapter 2: Representing Motion
Section 2.1: Picturing Motion
Section 2.2: Where and When?
Section 2.3: Position-Time Graphs
Section 2.4: How Fast?
Page 52: Assessment
Page 55: Standardized Test Practice
Page 39: Practice Problems
Page 42: Section Review
Page 45: Practice Problems
Page 47: Section Review
Chapter 3: Accelerated Motion
Section 3.1: Acceleration
Section 3.2: Motion with Constant Acceleration
Section 3.3: Free Fall
Page 80: Assessment
Page 85: Standardized Test Practice
Page 61: Practice Problems
Page 64: Section Review
Page 65: Practice Problems
Page 71: Section Review
Page 74: Practice Problems
Page 75: Section Review
Chapter 4: Forces in One Dimension
Section 4.1: Force and Motion
Section 4.2: Using Newton’s Laws
Section 4.3: Interaction Forces
Page 112: Assessment
Page 117: Standardized Test Practice
Page 89: Practice Problems
Page 95: Section Review
Page 97: Practice Problems
Page 101: Section Review
Page 104: Practice Problems
Page 107: Section Review
Chapter 5: Forces in Two Dimensions
Section 5.1: Vectors
Section 5.2: Friction
Section 5.3: Force and Motion in Two Dimensions
Page 140: Assessment
Page 145: Standardized Test Practice
Page 121: Practice Problems
Page 125: Section Review
Page 128: Practice Problems
Page 130: Section Review
Page 133: Practice Problems
Page 135: Section Review
Chapter 6: Motion in Two Dimensions
Section 6.1: Projectile Motion
Section 6.2: Circular Motion
Section 6.3: Relative Velocity
Page 164: Assessment
Page 169: Standardized Test Practice
Page 150: Practice Problems
Page 152: Section Review
Page 156: Section Review
Page 156: Practice Problems
Page 159: Practice Problems
Page 159: Section Review
Chapter 7: Gravitation
Section 7.1: Planetary Motion and Gravitation
Section 7.2: Using the Law of Universal Gravitation
Page 190: Assessment
Page 195: Standardized Test Practice
Page 174: Practice Problems
Page 178: Section Review
Page 181: Practice Problems
Page 185: Section Review
Chapter 8: Rotational Motion
Section 8.1: Describing Rotational Motion
Section 8.2: Rotational Dynamics
Section 8.3: Equilibrium
Page 222: Assessment
Page 227: Standardized Test Practice
Page 200: Section Review
Page 200: Practice Problems
Page 203: Practice Problems
Page 210: Section Review
Page 215: Practice Problems
Page 217: Section Review
Chapter 9: Momentum and Its Conservation
Section 9.1: Impulse and Momentum
Section 9.2: Conservation of Momentum
Page 250: Assessment
Page 255: Standardized Test Practice
Page 233: Practice Problems
Page 235: Section Review
Page 238: Practice Problems
Page 245: Section Review
Chapter 10: Energy, Work, and Simple Machines
Section 10.1: Energy and Work
Section 10.2: Machines
Page 278: Assessment
Page 283: Standardized Test Practice
Page 261: Practice Problems
Page 265: Section Review
Page 272: Practice Problems
Page 273: Section Review
Chapter 11: Energy and Its Conservation
Section 11.1: The Many Forms of Energy
Section 11.2: Conservation of Energy
Page 306: Assessment
Page 311: Standardized Test Practice
Page 287: Practice Problems
Page 292: Section Review
Page 297: Practice Problems
Page 301: Section Review
Chapter 12: Thermal Energy
Section 12.1: Temperature and Thermal Energy
Section 12.2: Changes of State and the Laws of Thermodynamics
Page 336: Assessment
Page 339: Standardized Test Practice
Page 317: Practice Problems
Page 322: Section Review
Page 325: Practice Problems
Page 331: Section Review
Chapter 13: State of Matter
Section 13.1: Properties of Fluids
Section 13.2: Forces Within Liquids
Section 13.3: Fluids at Rest and in Motion
Section 13.4: Solids
Page 368: Assessment
Page 373: Standardized Test Practice
Page 344: Practice Problems
Page 348: Section Review
Page 353: Practice Problems
Page 358: Section Review
Page 362: Practice Problems
Page 363: Section Review
Chapter 14: Vibrations and Waves
Section 14.1: Periodic Motion
Section 14.2: Wave Properties
Section 14.3: Wave Behavior
Page 396: Assessment
Page 401: Section Review
Page 386: Practice Problems
Page 386: Section Review
Chapter 15: Sound
Section 15.1: Properties of Detection of Sound
Section 15.2: The Physics of Music
Page 424: Assessment
Page 429: Standardized Test Practice
Page 405: Practice Problems
Page 410: Section Review
Page 416: Practice Problems
Page 419: Section Review
Chapter 16: Fundamentals of Light
Section 16.1: Illumination
Section 16.2: The Wave Nature of Light
Page 452: Assessment
Page 455: Standardized Test Practice
Page 436: Practice Problems
Page 438: Section Review
Page 447: Section Review
Page 447: Practice Problems
Chapter 17: Reflections and Mirrors
Section 17.1: Reflection from Plane Mirrors
Section 17.2: Curved Mirrors
Page 478: Assessment
Page 483: Standardized Test Practice
Page 460: Practice Problems
Page 463: Section Review
Page 469: Practice Problems
Page 473: Section Review
Chapter 18: Refraction and lenses
Section 18.1: Refraction of Light
Section 18.2: Convex and Concave Lenses
Section 18.3: Applications of Lenses
Page 508: Assessment
Page 513: Standardized Test Practice
Page 487: Practice Problems
Page 492: Section Review
Page 496: Practice Problems
Page 499: Section Review
Chapter 19: Interference and Diffraction
Section 19.1: Interference
Section 19.2: Diffraction
Page 536: Assessment
Page 539: Standardized Test Practice
Page 519: Practice Problems
Page 523: Section Review
Page 526: Practice Problems
Page 531: Section Review
Chapter 20: Static Electricity
Section 20.1: Electric Charge
Section 20.2: Electric Force
Page 558: Assessment
Page 561: Standardized Test Practice
Page 552: Practice Problems
Page 553: Section Review
Chapter 21: Electric Fields
Section 21.1: Creating and Measuring Electric Fields
Section 21.2: Applications of Electric Fields
Page 584: Assessment
Page 589: Standardized Test Practice
Page 565: Practice Problems
Page 568: Section Review
Page 571: Practice Problems
Page 579: Section Review
Chapter 22: Current Electricity
Section 22.1: Current and Circuits
Section 22.2: Using Electric Energy
Page 610: Assessment
Page 615: Standardized Test Practice
Page 594: Practice Problems
Page 600: Section Review
Page 603: Practice Problems
Page 605: Section Review
Chapter 23: Series and Parallel Circuits
Section 23.1: Simple Circuits
Section 23.2: Applications of Circuits
Page 636: Assessment
Page 641: Standardized Test Practice
Page 619: Practice Problems
Page 626: Section Review
Page 630: Practice Problems
Page 631: Section Review
Chapter 24: Magnetic Fields
Section 24.1: Magnets: Permanent and Temporary
Section 24.2: Forces Caused by Magnetic Fields
Page 664: Assessment
Page 669: Standardized Test Practice
Page 647: Practice Problems
Page 651: Section Review
Page 654: Practice Problems
Page 659: Section Review
Chapter 25: Electromagnetic Induction
Section 25.1: Electric Current from Changing Magnetic Fields
Section 25.2: Changing Magnetic Fields Induce EMF
Page 690: Assessment
Page 695: Standardized Test Practice
Page 675: Practice Problems
Page 678: Section Review
Page 684: Practice Problems
Page 685: Section Review
Chapter 26: Electromagnetism
Section 26.1: Interactions of Electric and Manetic Fields and Matter
Section 26.2: Electric and Magnetic Fields in Space
Page 718: Assessment
Page 721: Standardized Test Practice
Page 700: Practice Problems
Page 704: Section Review
Page 706: Practice Problems
Page 713: Section Review
Chapter 27: Quantum Theory
Section 27.1: A Particle Model of Waves
Section 27.2: Matter Waves
Page 742: Assessment
Page 745: Standardized Test Practice
Page 730: Practice Problems
Page 734: Section Review
Page 736: Practice Problems
Page 737: Section Review
Chapter 28: The Atom
Section 28.1: The Bohr Model of the Atom
Section 28.2: The Quantum Model of the Atom
Page 770: Assessment
Page 773: Standardized Test Practice
Page 757: Practice Problems
Page 759: Section Review
Chapter 29: Solid-State Electronics
Section 29.1: Conduction in Solids
Section 29.2: Electronic Devices
Page 794: Assessment
Page 797: Standardized Test Practice
Page 778: Practice Problems
Page 783: Section Review
Page 786: Practice Problems
Page 789: Section Review
Chapter 30: Nuclear Physics
Section 30.1: The Nucleus
Section 30.2: Nuclear Decay and Reactions
Section 30.3: The Building Blocks of Matter
Page 828: Assessment
Page 831: Standardized Test Practice
Page 801: Practice Problems
Page 805: Section Review
Page 808: Practice Problems
Page 814: Section Review
Page 821: Practice Problems
Page 823: Section Review
All Solutions
Page 447: Practice Problems
Exercise 14
Step 1
1 of 2
We know that the frequency of spectral line can be calculate as [f=frac{ c}{ lambda}] where $c= 3 cdot 10^{8} hspace{0.5mm} mathrm{frac{m}{s}}$ is the speed of light, and $lambda$ is the wavelength. In our case, the wavelength of oxygen’s spectral line is $ lambda=513 hspace{0.5mm} text{nm} Rightarrow lambda=513 cdot 10^{-9} hspace{0.5mm} text{m}$. So the frequency is
begin{align*}
f&=frac{c}{ lambda }\
f&=frac{3 cdot 10^{8} hspace{0.5mm} mathrm{frac{m}{s}}}{ 513 cdot 10^{-9} hspace{0.5mm} mathrm{m}}\
f&= frac{3}{513} cdot 10^{17} hspace{0.5mm} frac{1}{mathrm{s}}\
f&= 584.8 cdot 10^{12} hspace{0.5mm} text{Hz}
end{align*}
So, the frequency of oxygen’s spectral line is [ framebox[1.1width]{$ therefore f= 584.8 cdot 10^{12} hspace{0.5mm} text{Hz} $}]
begin{align*}
f&=frac{c}{ lambda }\
f&=frac{3 cdot 10^{8} hspace{0.5mm} mathrm{frac{m}{s}}}{ 513 cdot 10^{-9} hspace{0.5mm} mathrm{m}}\
f&= frac{3}{513} cdot 10^{17} hspace{0.5mm} frac{1}{mathrm{s}}\
f&= 584.8 cdot 10^{12} hspace{0.5mm} text{Hz}
end{align*}
So, the frequency of oxygen’s spectral line is [ framebox[1.1width]{$ therefore f= 584.8 cdot 10^{12} hspace{0.5mm} text{Hz} $}]
Result
2 of 2
$$
f= 584.8 cdot 10^{12} hspace{0.5mm} text{Hz}
$$
f= 584.8 cdot 10^{12} hspace{0.5mm} text{Hz}
$$
Exercise 15
Step 1
1 of 2
The speed of a hydrogen atom in a galaxy is $6.55 cdot 10^{6} hspace{0.5mm} mathrm{frac{m}{s}}$. That atom emits light with frequency of $6.16 cdot 10^{14} hspace{0.5mm} text{Hz}$, while is moving away from Earth. To find a frequency of light that would be observed by astronomer on Earth, we have to use equation $f_{obs}=f hspace{0.5mm} (1 – frac{v}{c} )$, where $v$ is the speed of a hydrogen atom in a galaxy, $c$ is the speed of the light, and $f$ is frequency of light that atom emits.
begin{align*}
f_{obs}&=f hspace{0.5mm} left(1 – frac{v}{c}right )\
f_{obs}&=6.16 cdot 10^{14} hspace{0.5mm} text{Hz} hspace{0.5mm} left(1 – frac{6.55 cdot 10^{6} hspace{0.5mm} mathrm{frac{m}{s}}}{3.00 cdot 10^{8} hspace{0.5mm} mathrm{frac{m}{s}}}right )\
f_{obs}&=6.16 cdot 10^{14} hspace{0.5mm} text{Hz} hspace{0.5mm} (1 – 2.18 cdot 10^{-2})\
f_{obs}&=6.15 cdot 10^{14} hspace{0.5mm} text{Hz}\
end{align*}
The frequency of light that would be observed by astronomer on Earth is [ framebox[1.1width]{$ therefore f=6.15 cdot 10^{14} hspace{0.5mm} text{Hz} $}]
begin{align*}
f_{obs}&=f hspace{0.5mm} left(1 – frac{v}{c}right )\
f_{obs}&=6.16 cdot 10^{14} hspace{0.5mm} text{Hz} hspace{0.5mm} left(1 – frac{6.55 cdot 10^{6} hspace{0.5mm} mathrm{frac{m}{s}}}{3.00 cdot 10^{8} hspace{0.5mm} mathrm{frac{m}{s}}}right )\
f_{obs}&=6.16 cdot 10^{14} hspace{0.5mm} text{Hz} hspace{0.5mm} (1 – 2.18 cdot 10^{-2})\
f_{obs}&=6.15 cdot 10^{14} hspace{0.5mm} text{Hz}\
end{align*}
The frequency of light that would be observed by astronomer on Earth is [ framebox[1.1width]{$ therefore f=6.15 cdot 10^{14} hspace{0.5mm} text{Hz} $}]
Result
2 of 2
$$
f=6.15 cdot 10^{14} hspace{0.5mm} text{Hz}
$$
f=6.15 cdot 10^{14} hspace{0.5mm} text{Hz}
$$
Exercise 16
Step 1
1 of 2
The speed of a hydrogen atom in a galaxy is $6.55 cdot 10^{6} hspace{0.5mm} mathrm{frac{m}{s}}$ (cannot be $6.55 cdot 10^{16} hspace{0.5mm} mathrm{frac{m}{s}}$ because it is greater than the speed of light). That atom emits light with wavelength of $4.86 cdot 10^{-7} hspace{0.5mm} mathrm{m}$, while is moving away from Earth. To calculate the wavelength that would be observed on Earth, we start from the equation $f_{obs}=f hspace{0.5mm} (1 – frac{v}{c} )$, and use the equation $f= frac{ c}{ lambda}$, where $c$ is the speed of light, and $ lambda$ is the wavelength.
begin{align*}
f_{obs}&=f hspace{0.5mm} (1 – frac{v}{c} )\
frac{c}{ lambda_{obs}}&= frac{c}{ lambda} hspace{0.5mm} (1 – frac{v}{c} ) /:c\
lambda &= lambda_{obs} hspace{0.5mm} (1 – frac{v}{c} )\
lambda_{obs} &= lambda hspace{0.5mm} (1 – frac{v}{c} )^{-1}\
lambda_{obs} &= 4.86 cdot 10^{-7} hspace{0.5mm} mathrm{m} hspace{0.5mm} (1 – frac{6.55 cdot 10^{6} hspace{0.5mm} mathrm{frac{m}{s}}}{3.00 cdot 10^{8} hspace{0.5mm} mathrm{frac{m}{s}}} )^{-1}\
lambda_{obs} &= 4.86 cdot 10^{-7} hspace{0.5mm} mathrm{m} hspace{0.5mm} (1 – 2.18 cdot 10^{-2} )^{-1}\
lambda_{obs} &= 4.97 cdot 10^{-7} hspace{0.5mm} mathrm{m}
end{align*}
The wavelength of light that would be observed by astronomer on Earth is [ framebox[1.1width]{$ therefore lambda_{obs} = 4.97 cdot 10^{-7} hspace{0.5mm} mathrm{m} $}]
begin{align*}
f_{obs}&=f hspace{0.5mm} (1 – frac{v}{c} )\
frac{c}{ lambda_{obs}}&= frac{c}{ lambda} hspace{0.5mm} (1 – frac{v}{c} ) /:c\
lambda &= lambda_{obs} hspace{0.5mm} (1 – frac{v}{c} )\
lambda_{obs} &= lambda hspace{0.5mm} (1 – frac{v}{c} )^{-1}\
lambda_{obs} &= 4.86 cdot 10^{-7} hspace{0.5mm} mathrm{m} hspace{0.5mm} (1 – frac{6.55 cdot 10^{6} hspace{0.5mm} mathrm{frac{m}{s}}}{3.00 cdot 10^{8} hspace{0.5mm} mathrm{frac{m}{s}}} )^{-1}\
lambda_{obs} &= 4.86 cdot 10^{-7} hspace{0.5mm} mathrm{m} hspace{0.5mm} (1 – 2.18 cdot 10^{-2} )^{-1}\
lambda_{obs} &= 4.97 cdot 10^{-7} hspace{0.5mm} mathrm{m}
end{align*}
The wavelength of light that would be observed by astronomer on Earth is [ framebox[1.1width]{$ therefore lambda_{obs} = 4.97 cdot 10^{-7} hspace{0.5mm} mathrm{m} $}]
Result
2 of 2
$$
lambda_{obs} = 4.97 cdot 10^{-7} hspace{0.5mm} mathrm{m}
$$
lambda_{obs} = 4.97 cdot 10^{-7} hspace{0.5mm} mathrm{m}
$$
Exercise 17
Step 1
1 of 2
The wavelength of oxygen’s spectral line is $ lambda= 513 hspace{0.5mm} mathrm{nm}$, and the observed wavelength of oxygen’s spectral line is $ lambda_{obs}=525 hspace{0.5mm} mathrm{nm} $. To find whether the galaxy is moving toward or away from Earth, we observe the equation for Doppler Shift $( lambda_{obs}- lambda= pm frac{v}{c} lambda)$. The part $ frac{v}{c}$ should be greater than zero. We can write
begin{align*}
lambda_{obs}- lambda&= pm frac{v}{c} lambda / : lambda\
frac{ lambda_{obs}}{ lambda} -1 &= pm frac{v}{c}\
frac{ 525 hspace{0.5mm} mathrm{nm} }{ 513 hspace{0.5mm} mathrm{nm}} -1 &= pm frac{v}{c}\
1.0234-1&= pm frac{v}{c}\
+ frac{v}{c}&=0.0234\
v&=0.0234c\
v&=0.0234 cdot 3 cdot 10^8 hspace{0.5mm} mathrm{frac{m}{s}}\
v&=7 cdot 10^6 hspace{0.5mm} mathrm{frac{m}{s}}
end{align*}
The sign was positive, so the galaxy is moving away from Earth, and the speed of oxygen atom is [ framebox[1.1width]{$ therefore v=7 cdot 10^6 hspace{0.5mm} mathrm{frac{m}{s}} $}]
begin{align*}
lambda_{obs}- lambda&= pm frac{v}{c} lambda / : lambda\
frac{ lambda_{obs}}{ lambda} -1 &= pm frac{v}{c}\
frac{ 525 hspace{0.5mm} mathrm{nm} }{ 513 hspace{0.5mm} mathrm{nm}} -1 &= pm frac{v}{c}\
1.0234-1&= pm frac{v}{c}\
+ frac{v}{c}&=0.0234\
v&=0.0234c\
v&=0.0234 cdot 3 cdot 10^8 hspace{0.5mm} mathrm{frac{m}{s}}\
v&=7 cdot 10^6 hspace{0.5mm} mathrm{frac{m}{s}}
end{align*}
The sign was positive, so the galaxy is moving away from Earth, and the speed of oxygen atom is [ framebox[1.1width]{$ therefore v=7 cdot 10^6 hspace{0.5mm} mathrm{frac{m}{s}} $}]
Result
2 of 2
$$
v=7 cdot 10^6 hspace{0.5mm} mathrm{frac{m}{s}}
$$
v=7 cdot 10^6 hspace{0.5mm} mathrm{frac{m}{s}}
$$
Haven't found what you were looking for?
Search for samples, answers to your questions and flashcards
unlock