All Solutions
Page 438: Section Review
$$
begin{align*}
E^{‘}&=E_{1}+E_{2}\
E^{‘}&=frac{P}{4 pi (2r)^2}+frac{P}{4 pi (2r)^2}\
E^{‘}&= 2 frac{P}{4 pi 4r^2}\
E^{‘}&= frac{2}{4} frac{P}{4 pi r^2}\
E^{‘}&= frac{1}{2} frac{P}{4 pi r^2}\
E^{‘}&= frac{1}{2} E\
end{align*}
$$
So, we can see the illuminances are not the same. One lightbulb provides more illuminance than two identical lightbulbs at twice the distance.
begin{align*}
E_{A}&=E_{B}\
frac{P_{A}}{4 hspace{0.5mm} pi r_{A}^{2}}&= frac{P_{B}}{4 hspace{0.5mm} pi r_{B}^{2}}\
P_{A} hspace{0.5mm} r_{B}^{2} &= P_{B} hspace{0.5mm} r_{A}^{2}\
P_{B}&= P_{A} frac{ r_{B}^{2}}{ r_{A}^{2}}\
P_{B}&= 942.5 hspace{0.5mm} mathrm{lm} frac{ (3.0 hspace{0.5mm} mathrm{m})^{2}}{ (5.0 hspace{0.5mm} mathrm{m})^{2}}\
P_{B}&= 942.5 hspace{0.5mm} mathrm{lm} frac{9.0}{ 25.0}\
P_{B}&= 339.3 hspace{0.5mm} mathrm{lm}\
end{align*}
The lamp B is rated $frac{339.3 hspace{0.5mm} mathrm{lm}}{4 pi}$
[ framebox[1.1width]{$ therefore 27.0 hspace{0.5mm} mathrm{cd} $}]
begin{align*}
E^{‘}&=2E\
frac{P}{4 pi r^{‘2}}&=2 frac{P}{4 pi r^2}\
r^2&=2r^{‘2}\
r^{‘}&= frac{1}{sqrt{2}}r\
r^{‘}&= frac{1}{sqrt{2}} cdot 1.0mathrm{,, m}\
r^{‘}&=0.7 mathrm{,,m}\
end{align*}
To provide the correct illuminance, the lightbulb should be at [ framebox[1.1width]{$ therefore r^{‘}=0.7mathrm{,,m} $}]
r^{‘}=0.7 mathrm{,,m}
$$
$t = dfrac{d}{c_{sound}} = dfrac{0.01}{343} = 2.915 times 10^{-5} s$
The distance light travels:
$$
d = c_{light} t = (3 times 10^8)*(2.915times 10^{-5}) = 8750 m
$$
8750 m
$$
begin{align*}
2l&= c t / : 2\
l&= frac{ct}{2}\
l&= frac{3 cdot 10^{8}hspace{0.5mm} mathrm{frac{m}{s}} cdot 2.562 hspace{0.5mm} mathrm{s} }{2}\
l&= frac{7.686 cdot 10^{8}hspace{0.5mm} mathrm{m} }{2}\
l&=3.843 cdot 10^{8}hspace{0.5mm} mathrm{m}
end{align*}
The distance from Earth to the Moon is [ framebox[1.1width]{$ therefore l=3.843 cdot 10^{8}hspace{0.5mm} mathrm{m} $}]
l=3.843 cdot 10^{8}hspace{0.5mm} mathrm{m}
$$
$$
begin{align*}
d&=ct / : t\
c&= frac{d}{t}\
c&= frac{ 2.98 cdot 10^{11} hspace{0.5mm} mathrm{m} }{990 hspace{0.5mm} mathrm{s}}\
c&= 3.01 cdot 10^{8} hspace{0.5mm} mathrm{frac{m}{s}}
end{align*}
$$
The precise value of speed of light is $2.99 cdot 10^{8} hspace{0.5mm} mathrm{frac{m}{s}}$, so the relative error is
$$
begin{align*}
RE&= frac{|c_{precise}-c|}{c_{precise}}\
RE&= frac{|2.99 cdot 10^{8} hspace{0.5mm} mathrm{frac{m}{s}} – 3.01 cdot 10^{8} hspace{0.5mm} mathrm{frac{m}{s}} |}{2.99 cdot 10^{8} hspace{0.5mm} frac{m}{s} }\
RE&= frac{0.02}{2.990} cdot 100 %\
RE&=0.007 cdot 100 %\
RE&=0.7 %
end{align*}
$$
We can see that the relative error is $0.7 %$, so it is negligible. We can say this method appears accurate.