All Solutions
Page 429: Standardized Test Practice
$f = 327, mathrm{Hz}$
$v = 1493, mathrm{m/s}$
$lambda = ?$
Wavelength is given by:
$$
lambda = dfrac{v}{f}
$$
When we put known values into the previous equation we get:
$$
lambda = dfrac{1493, mathrm{m/s}}{327, mathrm{Hz}}
$$
Finally:
$$
boxed{lambda = 4.57, mathrm{m}}
$$
lambda = 4.57, mathrm{m}
$$
$v = 351, mathrm{m/s}$
$f = 298,mathrm{Hz}$
$lambda = ?$
Wavelength is given by:
$$
lambda = dfrac{v}{f}
$$
When we put known values into the previous equation we get:
$$
lambda = dfrac{351, mathrm{m/s}}{298,mathrm{Hz}}
$$
$$
boxed{lambda = 1.18, mathrm{m}}
$$
$v_{o} = 60, mathrm{km/h} = 16.6, mathrm{m/s}$
$f_{s} = 512, mathrm{Hz}$
$v= 343, mathrm{m/s}$
$f_{o} = ?$
We will be using Doppler effect which gives us the following formula:
$$
f_{o} = f_{s} dfrac{v – v_{o}}{v – v_{s}}
$$
When we put known values into the previous equation we get:
$$
f_{o} = 512, mathrm{Hz} dfrac{343, mathrm{m/s} – 0}{343, mathrm{m/s} – 16.6, mathrm{m/s}}
$$
$$
boxed{f_{o} approx 538, mathrm{Hz}}
$$
$f_o = (512) (dfrac{343 – 0.0}{343 – (60/3.6)})$
$$
f_o = 538 Hz
$$
538 Hz
$$
$v_{o} = 72, mathrm{km/h} = 20, mathrm{m/s}$
$f_{s} = 657, mathrm{Hz}$
$f_{o} = ?$
We will be using Doppler’s effect which gives us the following formula:
$$
f_{o} = f_{s} dfrac{v – v_{o}}{v – v_{s}}
$$
When we put known values into the previous equation we get:
$$
f_{o} = 657, mathrm{Hz} dfrac{343, mathrm{m/s} – 20, mathrm{m/s}}{343, mathrm{m/s} – 0}
$$
$$
boxed{f_{o} approx 620, mathrm{Hz}}
$$
$f_o = (657) (dfrac{343 – (72/3.6)}{343 – 0.0})$
$$
f_o = 620 Hz
$$
620 Hz
$$
$f_{beat} = dfrac{20}{5.0} = 4.0 = |f_1 – f_2|$
Thus:
$f_1 – f_2 = 4.0 ===> f_2 = f_1 – 4.0 = 262 – 4.0 = 258 Hz$
or:
$f_1 – f_2 = -4.0 ===> f_2 = f_1 + 4.0 = 262 – 4.0 = 266 Hz$
$$
speed = v = lambda f = (0.672)*(488) = 328 m/s
$$
328 m/s
$$
$$L=16.8~mathrm{cm}=0.168~mathrm{m}$$
Now we can calculate the wavelength using the equation:
$$lambda=4cdot Ltag1$$
When we calculate it we will insert the value in the equation for speed of sound:
$$v=fcdotlambdatag2$$
$$begin{align*}
lambda&=4cdot L\
&=4cdot 0.168~mathrm{m}\
&= 0.672~mathrm{m}
end{align*}$$
Let’s now insert that value in equation (2):
$$begin{align*}
v&=fcdotlambda\
&=488~mathrm{Hz} ~cdot 0.672~mathrm{m}\
&=boxed{328~mathrm{frac{m}{s}}}
end{align*}$$
And that is the speed of sound in this problem.