All Solutions
Page 401: Section Review
$E_{p} = 8.67, mathrm{J}$
/$x = 247, mathrm{mm} = 0.247, mathrm{m}$
Energy is given by:
$$
E_{p} = dfrac{1}{2}kx^{2}
$$
We can express spring constant as:
$$
k= dfrac{E}{1/2x^{2}}
$$
When we put known values into the previous equation we get:
$$
k = dfrac{8.67, mathrm{J}}{1/2 cdot (0.247, mathrm{m})^{2}}
$$
$$
boxed{k = 284, mathrm{N/m}}
$$
k = 284, mathrm{N/m}
$$
$k = 275, mathrm{N/m}$
$x = 14.3, mathrm{cm} = 0.143, mathrm{m}$
Force is given by:
$$
F = kx
$$
When we put known values into the previous equation we get:
$$
F = 275, mathrm{N/m} cdot 0.143, mathrm{m}
$$
$$
boxed{F = 39.3, mathrm{N}}
$$
F = 39.3, mathrm{N}
$$
$m = 30.4, mathrm{g} = 0.0304, mathrm{kg}$
$x = 0.85, mathrm{m}$
We can determine spring constant by using Newton’s second law:
$$
kx = mg
$$
$g$ is gravitational acceleration which value is known $g = 9.81, mathrm{“m/s^{2}}$
$k$ will be:
$$
k = dfrac{mg}{x}
$$
When we put known values into the previous equation we get:
$$
k = dfrac{0.0304, mathrm{m} cdot 9.81, mathrm{m/s^{2}}}{0.85}
$$
$$
boxed{k = 0.35, mathrm{N/m} }
$$
0.35, mathrm{N/m}
$$
$m g = k x$
Solve for k:
$$
k = dfrac{m g}{x} = dfrac{(0.0304)*(9.80)}{(0.85)} = 0.35 N/m
$$
0.35 N/m
$$
$E = (1/2)*(350)*(0.85 – 0.050)^2$
$$
E = 112 N.m
$$
112 N.m
$$
$T^2 = (2 pi)^2 (dfrac{l}{g})$
$dfrac{l}{g} = dfrac{T^2}{(2 pi)^2}$
$$
l = dfrac{T^2 g}{(2 pi)^2}
$$
l = dfrac{T^2 g}{4 pi^2}
$$
$T = 3, mathrm{s}$
Frequency is given by:
$$
f = dfrac{1}{T}
$$
When we put known values into the previous equation we get:
$$
f = dfrac{1}{3, mathrm{s}}
$$
$$
boxed{f = 0.3, mathrm{1/s} = 0.3, mathrm{Hz}}
$$
0.3, mathrm{Hz}
$$
f = dfrac{1}{T} = dfrac{1}{3} = 0.3 Hz
$$
0.3 Hz
$$
Direction: Same
Medium: Same
$v = dfrac{2 d}{t} = dfrac{(2)*(11.2)}{4} = 5.6 m/s$
The frequency of the wave:
$$
f = dfrac{v}{lambda} = dfrac{5.6}{1.2} = 5 Hz
$$
5 Hz
$$
– Wavelength: $d = 1.2 mathrm{~m}$;
– Distance: $d = 11.2 mathrm{~m}$;
– Time: $t = 4 mathrm{~s}$;
**Required:**
– The frequency $f$;
$$begin{align*}
v &= frac{s}{t}&&(1) \
v &= lambda f &&(2)
end{align*}$$
$$begin{align*}
v &= frac{2d}{t} \
&= frac{2 cdot 11.2 mathrm{~m}}{4 mathrm{~s}} \
&= 5.6 ,frac{text{m}}{text{s}}
end{align*}$$
$$begin{align*}
f &= frac{v}{lambda} \
&= frac{5.6 ,frac{text{m}}{text{s}} }{1.2 mathrm{~m}} \
&= 4.67 mathrm{~Hz} \
&approx 5 mathrm{~Hz}
end{align*}$$
$$boxed{ f approx 5 mathrm{~Hz} }$$
$l = dfrac{T^2 g}{(2 pi)^2}$
$l = dfrac{(4.89)^2 (9.80)}{((2) (3.1416))^2}$
$$
l = 5.94 m
$$
5.94 m
$$
$k x = m g$
Solve for k:
$k = dfrac{m g}{x}$
Where:
the units of m = [m] = kg
the units of g = [g] = $dfrac{m}{s^2}$
the units of x = [x] = meters = m
Thus:
$[k] = dfrac{[m] [g]}{[x]}$
$[k] = dfrac{(kg) (m/s^2)}{m}$
$[k] = dfrac{kg}{s^2}$
dfrac{kg}{s^2}
$$